Situational Calculus, linear connection proofs and STRIPS-like planning: An experimental comparison

  • Bertram Fronhöfer
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1071)

Abstract

The paper presents implementations of two logical approaches to plan generation-Linear Connection Proofs and Situational Calculus- and analyses the reasons for their different computational performance. Both implementations are then compared with the planning system ucpop on a set of benchmarks. The interesting outcome is that the logical approaches compete rather well with ucpop and, in particular, with the exploitation of modern theorem proving technology as symbolic constraints, the performance of Situational Calculus is no longer completely disastrous.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Barrett and D. Weld. Partial-order planning: Evaluating possible efficiency gains. Artificial Intelligence, 67(1):71–112, 1994.Google Scholar
  2. [2]
    W. Bibel. Automated Theorem Proving. Vieweg, 1982.Google Scholar
  3. [3]
    W. Bibel. A Deductive Solution for Plan Generation. New Generation Computing, 6:115–132, 1986.Google Scholar
  4. [4]
    W. Bibel, L. Fariñas del Cerro, B. Fronhöfer, and A. Herzig. Plan Generation by Linear Proofs: On Semantics. In D. Metzing, editor, GWAI'89, 13 th German Workshop on Artificial Intelligence, volume 216 of Informatik-Fachberichte, pages 49–62, Schloß Eringerfeld, Geseke, Germany, September 1989. Springer, Berlin.Google Scholar
  5. [5]
    T. Bollinger. A Model Elimination Calculus for Generalized Clauses. In R. Reiter J. Mylopoulos, editor, IJCAI-91, pages 126–131, August 1991.Google Scholar
  6. [6]
    B. Fronhöfer. Linearity and Plan Generation. New Gen. Computing, 5:213–225, 1987.Google Scholar
  7. [7]
    B. Fronhöfer. Default Connections a Modal Planning Framework. In J. Hertzberg, editor, European Workshop on Planning (EWSP-91), pages 39–52, Bonn, March 18–19 1991. St.Augustin, Germany, LNAI 522, Springer.Google Scholar
  8. [8]
    B. Fronhöfer. Linear Proofs and Linear Logic. In D. Pearce and G. Wagner, editors, Logics in AI, pages 106–125, Berlin, September 7–10 1992. JELIA'92, LNCS 633.Google Scholar
  9. [9]
    B. Fronhöfer. The action-as-implication paradigm: Formal systems and application. Habilitationsschrift, TU München, 1995.Google Scholar
  10. [10]
    Ch. Goller, R. Letz, K. Mayr, and J. Schumann. Setheo V3.2: Recent Developments. In Alan Bundy, editor, CADE'94, pages 778–782, 1994.Google Scholar
  11. [11]
    C. Green. Application of Theorem Proving to Problem Solving. In IJCAI-1, pages 219–239, 1967.Google Scholar
  12. [12]
    G. Große, S. Hölldobler, and J. Schneeberger. Linear Deductive Planning. Technical report, Intellektik, Informatik, TH Darmstadt, 1992.Google Scholar
  13. [13]
    G. Große, S. Hölldobler, J. Schneeberger, U. Sigmund, and M. Thielscher. Equational Logic Programming, Actions, and Change. In Proc. Joint International Conference and Symposium on Logic Programming JICSLP'92, 1992.Google Scholar
  14. [14]
    S. Hölldobler and M. Thielscher. On logic, change, and specificity. Intellektik, Informatik, TH Darmstadt, 1992.Google Scholar
  15. [15]
    E. Jacopin. Classical AI Planning as Theorem Proving: The Case of a Fragment of Linear Logic. In AAAI Fall Syposium on “Automated Deduction in Non Classical Logics”, pages 62–66, Palo Alto, 1993. AAAI Press.Google Scholar
  16. [16]
    E. Jacopin. Construire des plans en utilisant le calcul des séquents pour un fragment de la logique linéaire. Tech. report, Laforia-IBP, Univ. P. et M. Curie, Paris, 1993.Google Scholar
  17. [17]
    R. Kowalski. Logic for Problem Solving. North Holland, New York, 1979.Google Scholar
  18. [18]
    R. Letz, S. Bayerl, J. Schumann, and B. Fronhöfer. The Logic Programming Language LOP. Technical report, Technische Universität München, 1989.Google Scholar
  19. [19]
    R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut Rule into Connection Tableau Calculi. JAR, 13:297–337, 1994.Google Scholar
  20. [20]
    R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performance Theorem Prover. JAR, 8(2):183–212, 1992.Google Scholar
  21. [21]
    V. Lifshitz. On the Semantics of STRIPS. In M.P. Georgeff and A.L. Lansky, editors, Workshop on Reasoning about Actions and Plans, pages 1–8. Morgan Kaufmann, 1986.Google Scholar
  22. [22]
    M. Masseron, C. Tollu, and J. Vauzeilles. Generating Plans in Linear Logic. Technical Report 90-11, Université Paris Nord, Dép. de math. et informatique, December 1990.Google Scholar
  23. [23]
    J. McCarthy and P. Hayes. Some Philosophical Problems from the Stand-point of Artificial Intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 463–502. Edinburgh University Press, 1969.Google Scholar
  24. [24]
    N. J. Nilsson. Principles of Artificial Intelligence. Springer, 1982.Google Scholar
  25. [25]
    J.S. Penberthy and D. Weld. UCPOP: a sound, complete, partial order planner for ADL. In KR-92, pages 103–114, October 1992.Google Scholar
  26. [26]
    D. Plaisted. The Search Efficiency of Theorem Proving Strategies. In Alan Bundy, editor, CADE'94, pages 57–71, 1994.Google Scholar
  27. [27]
    R. Reiter. The frame problem in the situation calculus. In Vladimir Lifschitz, editor, Artificial Intelligence and Mathematical Theory of Computation, pages 359–380. Academic Press, 1991.Google Scholar
  28. [28]
    J. Schneeberger and S. Hölldobler. A New Deductive Approach to Planning. New Generation Computing, 8:225–244, 1990.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Bertram Fronhöfer
    • 1
  1. 1.Fac. des SciencesUniversité d'AngersAngers Cedex 01

Personalised recommendations