Metacomputing to solve complex computational problems

A case study: Evolution of galaxies
  • R. Baraglia
  • G. Faieta
  • M. Formica
  • D. Laforenza
  • M. Stiavelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1067)


In this paper we describe the implementation of a parallel code to study the n-body problem of non-destructive evolution processes inside a cluster of galaxies. The code has been implemented and optimized for a metacomputer structured as a workstation cluster which can be set up by computers located either in the same site or in geographically distributed sites. The use of a metacomputer is very important for carrying out complex simulations. Performance results obtained by executing several tests on homogeneous and heterogeneous clusters of workstations and on a metacomputer made up of four IBM SP2s located in Italy are given.


Metacomputing Astrophysics Gravitational n-body Problem IBM SP2 Visual Interface PVM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertin, M. Stiavelli 1993, Reports on Progress in PhysicsGoogle Scholar
  2. 2.
    S. Aarseth, Multiple Timescales, ed. J.U. Brackbill & B.I. Cohen, p.377, Orlando: Academic Press, 1985Google Scholar
  3. 3.
    L. Hernquist, Computer Physics Communications, 48, 107, 1988.Google Scholar
  4. 4.
    A. J. G. Hey, Experiment in MIMD Parallelism, In proceedings of Int. Conf. PARLE 89, Eindhoven, The Netherlands, June 1989. LNCS 366 Springer-Verlag 56, 493Google Scholar
  5. 5.
    C. C. Douglas, T. G. Mattson, and M. H. Schultz. Parallel programming systems for workstation clusters. Technical Report YALEU/DCS/TR975, Dep. of Computer Science, Yale University, USA, August 1993.Google Scholar
  6. 6.
    J. J. Dongarra, G. A. Geist, Robert Manchek, and Vaidy S. Sunderam, Integrated PVM framework supports heterogeneous network computing, Computers in Physics, 7(2):166–175, 1993.Google Scholar
  7. 7.
    L. Smarr. C. E. Catlett, Metacomputing, Communications of the ACM, June 1992, Vol. 35, No. 6 (45–52).Google Scholar
  8. 8.
    9076 Scalable POWERparallel Systems: SP2 System Planning Realease 2, IBM Corporation, document number SC23-3864-00, Nov., 1994.Google Scholar
  9. 9.
    R. Baraglia, G. Faieta, M. Formica, D. Laforenza, WAMM: A Visual Interface for Managing Metacomputers, In proceedings of the Second European PVM User's Group Meeting, Ecole Superieure de Lyon, September 1995, Hermes Editor, pp. 137–142.Google Scholar
  10. 10.
    V.S. Sunderam, PVM: a Framework for Parallel Distributed Computing, Concurrency: Practice and Experience, 2(4):315–339, December 1990.Google Scholar
  11. 11.
    G. A. Geist, V. S. Sunderam, Network-Based Concurrent Computing on the PVM-System,Concurrency: Practice and Experience — Vol. 4(4) — July 1992Google Scholar
  12. 12.
    J. J. Dongarra, G. A. Geist, R. Manchek, V.S. Sunderam, The PVM Concurrent System: Evolution, Experiences and Trends, Parallel Computing 20(1994) 531–545Google Scholar
  13. 13.
    H. E. Bal, J. G. Steiner, A. S. Tanenbaum, Programming Languaues for Distributed Computing Systems, ACM Computing Surveys, Vol. 21, No. 3, September 1989Google Scholar
  14. 14.
    J. Salmon, M. Warren, ”A Parallel Hashed Oct-Tree N-Body Algorithm”, Proceedings of Supercomputing '93.Google Scholar
  15. 15.
    D. Edelsohn, ”Hierarchical Tree-Structures as Adaptive Meshes”, International Journal of Modern Physics C, 4(5), Oct 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • R. Baraglia
    • 1
  • G. Faieta
    • 1
  • M. Formica
    • 1
  • D. Laforenza
    • 1
  • M. Stiavelli
    • 2
  1. 1.CNUCE - Institute of the Italian National Research CouncilPisaItaly
  2. 2.Scuola Normale SuperiorePiazza dei CavalieriPisaItaly

Personalised recommendations