Skip to main content

Application of density functional theory to the calculation of force fields and vibrational frequencies of transition metal complexes

  • Chapter
  • First Online:
Density Functional Theory III

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 182))

Abstract

In the last five years we have applied density functional theory to gain information about the harmonic force fields, vibrational frequencies and IR intensities of transition metal complexes. This paper is the summary of the outcome of this series of investigations. We discuss the calculation procedures with special emphasis on the effect of reference geometry and exchange correlation potential. We also include our benchmark test calculation of the benzene force field. We discuss the major findings of our force field studies of transition metal complexes: ferrocene, debenzene-chromium, benzene-chromium tricarbonyl, and transition metal carbonyls. We found numerous miss assignments in the experimental spectra. We investigated how the force constants of aromatic rings change upon complexation, and we provide explanations for these changes based on qualitative orbital analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Versluis L, Ziegler T (1988) J Chem Phys 88: 322

    Article  Google Scholar 

  2. Fournier R, Andzelm J, Salahub, DR (1989) J Chem Phys 90: 6371

    Article  Google Scholar 

  3. Handy NC, Tozer DJ, Murray CW, Laming GJ, Amos RD (1993) Isr J Chem 33: 331

    Google Scholar 

  4. Dunlap I, Andzelm J (1992) Phys Rev A45: 81

    Google Scholar 

  5. Johnson BG, Frisch MJ (1994) J Chem Phys 100: 7429

    Article  Google Scholar 

  6. Fournier R, Papai I (1996) in Chong DP (ed) “Recent Advances in Density Functional Methods”, Part I, World Scientific

    Google Scholar 

  7. Ziegler T (1991) Chem Rev 91: 651

    Article  Google Scholar 

  8. Ziegler T, Rauk A (1977) Theoret Chim Acta (Berl.) 43: 261

    Article  Google Scholar 

  9. Becke AD ACS Symp Ser (1989): 394

    Google Scholar 

  10. Becke AD (1982) J Chem Phys 76: 6037

    Article  Google Scholar 

  11. Fan L, Versluis L, Ziegler T, Baerends EJ, Ravenek W (1988) Int J Quantum Chem S22: 173

    Article  Google Scholar 

  12. Papai I, St-Amant A, Fournier R, Salahub DR (1989) Int J Quantum Chem S23

    Google Scholar 

  13. Fan L, PhD Thesis The University of Calgary (1992)

    Google Scholar 

  14. Fan L., Ziegler T (1992) J Chem Phys 96: 9005

    Article  Google Scholar 

  15. Fan L, Ziegler T (1992) J Phys Chem 96: 6937

    Article  Google Scholar 

  16. Andzelm J, Wimmer E (1992) J Chem Phys 96: 1280

    Article  Google Scholar 

  17. Sosa C, Andzelm J, Elkin BE, Wimmer E, Dobbs KD, Dixon DA, (1992) J Phys Chem 96: 6630

    Article  Google Scholar 

  18. Goodman L, Ozkabak AG, Thakur SN (1991) J Phys Chem 95: 9044

    Article  Google Scholar 

  19. Pulay P, Fogarasi G, Boggs JE (1981) J Chem Phys 74: 3999

    Article  Google Scholar 

  20. BĂ©rces A, Ziegler T (1993) J Chem Phys 98: 4793

    Article  Google Scholar 

  21. BĂ©rces A, Ziegler T (1993) J Chem Phys Lett 203: 592

    Article  Google Scholar 

  22. Handy NC, Maslen PE, Amos RD, Andrews JS, Murray CW, Laming GJ (1992) Chem Phys Lett 197: 506

    Article  Google Scholar 

  23. Schäfer L, Begun GM, Cyvin SJ (1972) Spectochim Acta 28A: 803

    Google Scholar 

  24. Schwendeman RH (1966) J Chem Phys 44: 556 ibid (1966) 44: 2115

    Article  Google Scholar 

  25. Blom CE, Altona C (1976) Mol Phys 31: 1377

    Google Scholar 

  26. Pulay P, Fogarasi G, Pang F, Boggs JE (1979) J Am Chem Soc 101: 2550

    Article  Google Scholar 

  27. Fogarasi G, Pulay P (1985) in: Durig JR (ed) Vibrational Spectra and Structure Elsevier, New York, Vol 14, p 125–219

    Google Scholar 

  28. Fogarasi G, Zhou X, Taylor PW, Pulay P (1992) J Am Chem Soc 114: 8191

    Article  Google Scholar 

  29. Allen WD, Csaszar A (1993) J Chem Phys 98: 2983

    Article  Google Scholar 

  30. BĂ©rces A. Ziegler T (1995) J Phys Chem (1995) 99: 11417

    Article  Google Scholar 

  31. El'yashevich MA (1940) Dokl Akad Nauk SSSR 28: 605 (in Russian)

    Google Scholar 

  32. Wilson Jr EB (1941) J Chem Phys 9: 76

    Article  Google Scholar 

  33. Wilson Jr EB, Decius JC, Cross PC Molecular Vibrations McGraw-Hill New York, (1955)

    Google Scholar 

  34. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2: 41

    Article  Google Scholar 

  35. Ravenek W in Algorithms and Applications on Vector and Parallel Computers; te Riele HJJ; Dekker Th J; van de Vorst HA (Eds.); Elsevier, Amsterdam, (1987)

    Google Scholar 

  36. Boerrigter PM, te Velde G, Baerends EJ (1988) Int J Quantum Chem 33: 87

    Article  Google Scholar 

  37. te Velde G, Baerends EJ (1992) J Comp Phys 99: 84

    Article  Google Scholar 

  38. Krijn J, Baerends EJ (1984) “Fit functions in the HFS-method”, Internal Report (in Dutch) Free University of Amsterdam, The Netherlands

    Google Scholar 

  39. Snijders GJ, Baerends EJ, Vernooijs P (1982) At Nucl Data Tables 26: 483

    Article  Google Scholar 

  40. Vernooijs P, Snijders GJ, Baerends EJ (1981) “Slater Type Basis Functions for the whole Periodic System”; Internal report, Free University of Amsterdam, The Netherlands

    Google Scholar 

  41. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58: 1200

    Google Scholar 

  42. Becke AD (1988) Phys Rev A 38: 2398

    Google Scholar 

  43. Perdew JP (1986) Phys Rev B33: 8822; ibid (1986) B34: 7046

    Google Scholar 

  44. Fan L., Ziegler T (1991) J Chem Phys 94: 6057

    Article  Google Scholar 

  45. Fan L, Ziegler T (1991) J Chem Phys 95: 7401

    Article  Google Scholar 

  46. Császár P, Pulay P (1984) J Mol Struct 114: 31

    Article  Google Scholar 

  47. Pulay P (1980) Chem Phys Lett 73: 393

    Article  Google Scholar 

  48. Pulay P (1982) J Comput Chem 3: 556

    Article  Google Scholar 

  49. Szalay PG, based on the program GEOMO by Pulay. Eotvos University, Budapest, Hungary

    Google Scholar 

  50. BĂ©rces A, Ziegler T, Fan L (1994) J Phys Chem 98: 1584

    Article  Google Scholar 

  51. Fan L, Versluis L, Ziegler T, Baerends EJ, Ravenek W (1988) Int J Quantum Chem S22: 173

    Article  Google Scholar 

  52. Maurer F, Wieser H The University of Calgary, Calgary, Canada

    Google Scholar 

  53. Schachtschneider, Shell Development Company Emergville California, (1960)

    Google Scholar 

  54. Hochstrasser RM, Wessel JE, Sung HN (1974) J Chem Phys 60: 317

    Article  Google Scholar 

  55. Hochstrasser RM, Sung HN, Wessel JE (1973) J Am Chem Soc 95: 8179

    Article  Google Scholar 

  56. Berman JM, Goodman L (1987) J Chem Phys 87: 1479

    Article  Google Scholar 

  57. Wunsch L, Metz F, Neusser HJ, Schlag EW (1977) J Chem Phys 66: 386

    Article  Google Scholar 

  58. Guo H, Karpulus M (1988) J Chem Phys 89: 4235

    Article  Google Scholar 

  59. Ozkabak AG, Goodman L, Wiberg KB (1990) J Chem Phys 92: 4115

    Article  Google Scholar 

  60. Zhou X, Fogarasi G, Pulay P unpublished, (1992)

    Google Scholar 

  61. Pulay P (1986) J Chem Phys 85: 1703

    Article  Google Scholar 

  62. Pongor G, Pulay P, Fogarasi G, Boggs JE (1984) J Am Chem Soc 106: 2765

    Article  Google Scholar 

  63. Sellers H, Pulay P, Boggs JE (1985) J Am Chem Soc 107: 6487

    Article  Google Scholar 

  64. Ozkabak AG, Goodman L, Thakur SN, Krogh-Jespersen K (1985) J Chem Phys 83: 6047

    Article  Google Scholar 

  65. Ozkabak AG, Goodman L (1987) J Chem Phys 87: 2564

    Article  Google Scholar 

  66. Buijse MA, Baerends EJ (1991) J Chem Phys 93: 4190

    Google Scholar 

  67. Buijse MA, Baerends EJ (1991) Theor Chim Acta 79: 389

    Article  Google Scholar 

  68. Tschinke V, Ziegler T (1991) Theor Chim Acta 81: 65

    Article  Google Scholar 

  69. Akiyama M (1980) J Mol Spectrosc 84: 49; (1982) 93: 154

    Article  Google Scholar 

  70. Dang-Nhu M, Pliva J (1989) Mol Spectrosc 138: 423

    Article  Google Scholar 

  71. Goodman L, Ozkabak AG, Wiberg KB (1989) J Chem Phys 91: 2069

    Article  Google Scholar 

  72. Hollenstein H, Piccirillo S, Quack M, Snels M (1990) Mol Phys 71: 759

    Google Scholar 

  73. Whiffen DH (1955) Philos Trans R Soc London Ser A 248: 131

    Google Scholar 

  74. Haaland A (1979) Acc Chem Res 12: 415

    Article  Google Scholar 

  75. Haaland A, Nilsson JE (1968) Acta Chem Scandinavica 22: 2653.

    Google Scholar 

  76. Sado A, West R, Fritz HP, Schafer L (1966) Spectrochim Acta 22: 509

    Article  Google Scholar 

  77. Doman TN, Landis CR, Bosnich B (1992) J Am Chem Soc 114: 7264

    Article  Google Scholar 

  78. Takusagawa F, Koetzle TF (1979) Acta Crystallogr B35: 1074

    Google Scholar 

  79. Kukolich SG, Sickafoose SM, Flores LD, Breckenridge SMJ (1994) Chem Phys 100: 6125

    Article  Google Scholar 

  80. Chiu N-S, Schäfer L, Seip R (1975) Organomet Chem 101: 331

    Article  Google Scholar 

  81. Rees B, Coppens P (1973) Acta Cryst B29: 2515

    Google Scholar 

  82. Bodenheimer JS, Low W (1973) Spectrochimica Acta 29A: 1733

    Google Scholar 

  83. Lippincott ER, Nelson RD (1958) Spectrochim. Acta 10: 307

    Article  Google Scholar 

  84. Margl P, Schwarz K, Blöchl PE (1994) J Chem Phys 100: 8617

    Article  Google Scholar 

  85. Snyder RG (1959) Spectrochim Acta 10: 807

    Article  Google Scholar 

  86. Schäfer L, Southern JE, Cyvin SJ (1971) Spectrochim Acta 27A: 1083

    Google Scholar 

  87. Cyvin SJ, Brunvoll J, Schäfer L (1971) J Chem Phys 54: 1517

    Article  Google Scholar 

  88. English AM, Plowman KR, Butler IS (1982) Inorg Chem 21: 338–347

    Article  Google Scholar 

  89. Adams DM, Christopher RE, Stevens DC Inorg Chem (1975) 14: 1562

    Article  Google Scholar 

  90. Bisby EM, Davidson G, Duce DA (1978) J Mol Structure 48: 93

    Article  Google Scholar 

  91. Delley B, Wrinn M, Luthi HP (1994) J Chem Phys 100: 5785

    Article  Google Scholar 

  92. Berces A, Ziegler T (1994) J Phys Chem 98: 13233

    Article  Google Scholar 

  93. Pulay P, Fogarasi G, Ponger G, Boggs JE, Vargha A (1983) J Am Chem Soc 105: 7037

    Article  Google Scholar 

  94. Brunvoll J, Cyvin SJ, Schafer L (1971) J Organometal Chem 27: 107

    Article  Google Scholar 

  95. Hartley D, Ware J (1969) J Chem Soc (A) 138

    Google Scholar 

  96. Brunvoll J, Cyvin SJ, Schafer L J. Organometal Chem (1971) 27: 69

    Article  Google Scholar 

  97. Stoicheff BP (1954) Can J Phys 32: 339

    Google Scholar 

  98. Jones LH, McDowell RS, Goldblatt M (1969) Inorg Chem 8: 2349

    Article  Google Scholar 

  99. Jost A, Rees B, Yelon WB (1975) Acta Crystallogr B31: 2649

    Google Scholar 

  100. Bohn RK, Haaland A, (1966) J Organometal Chem 5: 470–476

    Article  Google Scholar 

  101. Haaland A (1965) Acta Chem Scandinavica 19: 41

    Google Scholar 

  102. Hedberg L, Lijima T, Hedberg K (1979) J Chem Phys 70: 3224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. F. Nalewajski

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

BĂ©rces, A., Ziegler, T. (1996). Application of density functional theory to the calculation of force fields and vibrational frequencies of transition metal complexes. In: Nalewajski, R.F. (eds) Density Functional Theory III. Topics in Current Chemistry, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61132-0_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-61132-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61132-5

  • Online ISBN: 978-3-540-49952-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics