Advertisement

Direct methods for self-calibration of a moving stereo head

  • M. J. Brooks
  • L. de Agapito
  • D. Q. Huynh
  • L. Baumela
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1065)

Abstract

We consider the self-calibration problem in the special context of a stereo head, where the two cameras are arranged on a lateral rig with coplanar optical axes, each camera being free to vary its angle of vergence. Under various constraints, we derive explicit forms for the epipolar equation, and show that a static stereo head constitutes a degenerate camera configuration for carrying out self-calibration in the sense of Hartley [4]. The situation is retrieved by consideration of a special kind of motion of the stereo head in which the baseline remains confined to a plane. New closed-form solutions for self-calibration are thereby obtained, inspired by an earlier discrete motion analysis of Zhang et al. [11]. Key factors in our approach are the development of explicit, analytical forms of the fundamental matrix, and the use of the vergence angles in the parameterisation of the problem.

Keywords

Self-calibration stereo head degeneracy epipolar equation fundamental matrix ego-motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brooks, M. J., Agapito, L., Huynh, D. Q. and Baumela, L. Direct Methods for Self-Calibration of a Moving Stereo Head. Tech. Rep. 1/96, CSSIP, January, 1996.Google Scholar
  2. 2.
    Brooks, M. J., Baumela, L. and Chojnacki, W. An Analytical Approach to Determining the Egomotion of a Camera having Free Intrinsic Parameters. Tech. Rep. 96-04, Dept. Computer Science, University of Adelaide, January, 1996.Google Scholar
  3. 3.
    Faugeras, O. D., Luong, Q. T. and Maybank, S. J. Camera Self-Calibration: Theory and Experiments. In Proc. European Conference on Computer Vision (1992), pp. 321–334.Google Scholar
  4. 4.
    Hartley, R. I. Estimation of Relative Camera Positions for Uncalibrated Cameras. In Proc. European Conference on Computer Vision (1992), pp. 579–587.Google Scholar
  5. 5.
    Huynh, D. Q., Brooks, M. J., Agapito, L. de and Pan. H-P. Stereo Cameras With Coplanar Optical Axes: a Degenerate Configuration for Self-Calibration. Tech. Rep. 2/96, CSSIP, January, 1996.Google Scholar
  6. 6.
    Luong, Q.-T., Deriche, R., Faugeras, O. and Papadopoulo, T. On Determining the Fundamental Matrix: Analysis of Different Methods and Experimental Results. Tech. Rep. 1894, INRIA, 1993.Google Scholar
  7. 7.
    Maybank, S. J. and Faugeras, O. D. A Theory of Self-Calibration of a Moving Camera. International Journal of Computer Vision, 8, 2 (1992), 123–151.Google Scholar
  8. 8.
    Pan, H.-P., Brooks, M. J. and Newsam, G. N. Image Resituation: Initial Theory. In SPIE Videometrics (1995), vol. 2598, pp. 162–173.Google Scholar
  9. 9.
    Viéville, T., Luong, Q. and Faugeras, O. Motion of Points and Lines in the Uncalibrated Case. International Journal of Computer Vision 17, 1 (1994).Google Scholar
  10. 10.
    Viéville, T. and Faugeras, O. Motion Analysis with a Camera with Unknown, and Possibly Varying Intrinsic Parameters. In ICCV'95 (Cambridge, MA, June 1995), IEEE, pp. 750–756.Google Scholar
  11. 11.
    Zhang, Z., Deriche, R., Faugeras, O. and Luong, Q. T. A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry. Tech. Rep. 2273, INRIA, 1994.Google Scholar
  12. 12.
    Zhang, Z., Luong, Q. T. and Faugeras, O. D. Motion of an Uncalibrated Stereo rig: Self-Calibration and Metric Reconstruction. Tech. Rep. 2079, INRIA, 1993.Google Scholar
  13. 13.
    Zisserman, A., Beardsley, P. A. and Reid, I. Metric Calibration of a Stereo Rig. Proc. IEEE Workshop on Representation of Visual Scenes, Boston, June, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • M. J. Brooks
    • 1
    • 3
  • L. de Agapito
    • 2
  • D. Q. Huynh
    • 1
  • L. Baumela
    • 3
  1. 1.Centre for Sensor Signal and Information ProcessingSignal Processing Research InstituteAdelaideAustralia
  2. 2.Instituto de Automática IndustrialCSIC, La PovedaMadridSpain
  3. 3.Departamento de Inteligencia Artificial, Facultad de InformáticaUniversidad Politécnica de MadridBoadilla del MonteSpain

Personalised recommendations