Interactive evolution for simulated natural evolution

  • Jeanine Graf
  • Wolfgang Banzhaf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1063)


Evolutionary algorithms of selection and variation by recombination and/or mutation have been used to simulate biological evolution. This paper demonstrates how interactive evolution can be used to study the evolution of simulated natural evolution. Since interactive evolution allows the user to direct the development of models of natural systems, it can be used to direct the evolution of models of animals and plants. We show that interactivity of artificial evolution can serve as a useful tool in the ontogenesis and phylogenesis of simulated models. This may help paleontologists solve problems in identifying likely missing links and provides a technique to generate constrained conjectures regarding gaps in evolutionary data.


Growth Paleontology Evolutionary Algorithms Simulation of Natural Evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Arvo. Graphics Gems II. Academic Press, California, 1991.Google Scholar
  2. 2.
    Th. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, 1996.Google Scholar
  3. 3.
    A. Berta. What is a whale? Science 263, pages 180–181, 1994.Google Scholar
  4. 4.
    E. Cutler, D. Gilly, and T. O'Reilly. The X Window System in a Nutshell. The Definitive Guides to the X Window System. O'Reilly & Associates, Inc., Sebastopol, CA, 1993.Google Scholar
  5. 5.
    L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinold, New York, 1991.Google Scholar
  6. 6.
    R. Dawkins. The Blind Watchmaker. Longman, Harlow, 1986.Google Scholar
  7. 7.
    D. B. Fogel, L. J. Fogel, W. Atmar, and G. B. Fogel. Hierarchic methods of evolutionary programming. In D. B. Fogel and W. Atmar, editors, Proc. of the First Annual Conference on Evolutionary Programming, pages 175–182, La Jolla, CA, 1992. Evolutionary Programming Society.Google Scholar
  8. 8.
    D.B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, New York, 1995.Google Scholar
  9. 9.
    L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated Evolution. Wiley, New York, 1966.Google Scholar
  10. 10.
    T. A. Foley. Computer Graphics Principles and Practice. Addison-Wesley, MA, 1992.Google Scholar
  11. 11.
    T. Gaskin. DGXWS — PEXlib Programming Manual 3D Programming in X. O'Reilly & Associates, Sebastopol, CA, 1992.Google Scholar
  12. 12.
    P.D. Gingerich, B.H. Smith, and E.L. Simons. Hind limb of eocene basilosaurus: evidence of feet in whales. Science 249, pages 154–156, 1990.Google Scholar
  13. 13.
    A. Glassner. Graphics Gems I. Academic Press, California, 1990.Google Scholar
  14. 14.
    D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, MA, 1989.Google Scholar
  15. 15.
    Jeanine Graf. Interactive evolutionary algorithms in design. In International Conference on Artificial Neural Networks and Genetic Algorithms, pages 227–230, Ecole des Mines d'Alès, France, 1995. Proceedings of the ICANNGA, Springer-Verlag, Vienna.Google Scholar
  16. 16.
    Jeanine Graf and Banzhaf Wolfgang. Interactive evolution of images. In Proceedings of the Fourth Annual Conference on Evolutionary Programming, pages 53–65, San Diego CA, 1995. The MIT Press, Cambridge, MA.Google Scholar
  17. 17.
    W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimization procedure. In Physica D 42, 228–234, 1990.Google Scholar
  18. 18.
    J. H. Holland. Adaption in Natural and Artificial Systems. Ann Arbor, The University of Michigan Press, 1975.Google Scholar
  19. 19.
    K. De Jong. An analysis of the behavior of a class of genetic adaptive systems. Doctoral dissertation, U. of Mich, 1975.Google Scholar
  20. 20.
    D. Kirik. Graphics Gems III. Academic Press, California, 1992.Google Scholar
  21. 21.
    R. Lewontin. Adaptation. Special Issue on Evolution, pages 105–114, 1978.Google Scholar
  22. 22.
    E. Mayr. Evolution. Special Issue on Evolution, pages 2–13, 1978.Google Scholar
  23. 23.
    I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, 1994.Google Scholar
  24. 24.
    D. Ruprecht. Geometrische Deformationen als Werkzeug in der graphischen Datenverarbeitung. Doctoral dissertation, University of Dortmund, 1994.Google Scholar
  25. 25.
    H.-P. Schwefel. Numerical Optimization of Computer Models. Wiley, NY, 1995.Google Scholar
  26. 26.
    K. Sims. Artificial evolution for computer graphics. Computer Graphics, (25):319–328, 1991.Google Scholar
  27. 27.
    J.G.M. Thewissen, S.T. Hussain, and M. Arif. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263, pages 210–212, 1993.Google Scholar
  28. 28.
    D'Arcy Thompson. On Growth and Form. Cambridge University Press, NY, 1942.Google Scholar
  29. 29.
    S.P. Todd and W. Latham. Mutator, a Subjective Human Interface for Evolution of Computer Sculptures. IBM United Kingdom Scientific Center Report, 1991.Google Scholar
  30. 30.
    J. Valentine. The evolution of multicellular plants and animals. Special Issue on Evolution, pages 49–66, 1978.Google Scholar
  31. 31.
    A. Watt. 3D Computer Graphics. Addison-Wesley, Reading, Massachusetts, second edition, 1993.Google Scholar
  32. 32.
    G. Woldberg. Digital Image Warping. IEEE Computer Society Press, Los Alamitos, CA, 1990.Google Scholar
  33. 33.
    D.A. Young and J.A. Pew. The X Window System Programming & Applications with Xt. Prentice Hall, Englewood Cliffs, NJ, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jeanine Graf
    • 1
  • Wolfgang Banzhaf
    • 1
  1. 1.Informatik Centrum Dortmund (ICD)DortmundGermany

Personalised recommendations