Full abstraction for lambda calculus with resources and convergence testing

  • Gérard Boudol
  • Carolina Lavatelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1059)


The calculus with resources is a non-deterministic refinement of lazy λ calculus which provides explicit means to control the number of times an argument can be used [6], and introduces the possibility of raising deadlocks during evaluation. It arose in connection with Milner's encoding of lazy lambda calculus into π calculus and proved to be the correct extension to study the semantics induced by π-calculus over pure λ-terms. In this paper, we study a functionality theory in the style of Coppo et al.'s intersection type system for the calculus of resources extended with convergence testing. The interpretation of terms in this typing system gives rise to a fully abstract semantics of the calculus. This is shown following the definability approach. We also prove that this semantics is not fully abstract for the calculus without convergence testing.


λ-calculus intersection type systems full abstraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abadi, L. Cardelli, P.-L. Curien, J.-J. Lévy. Explicit Substitutions. Journal of Functional Programming, 1. 1991.Google Scholar
  2. 2.
    S. Abramsky. The Lazy Lambda Calculus. In D. Turner, editor, Research Topics in Functional Programming. Addison Wesley. 1989.Google Scholar
  3. 3.
    S. Abramsky, L. Ong. Full Abstraction in the lazy lambda calculus. Information and Computation, 105(2). 1993.Google Scholar
  4. 4.
    H. Barendregt, M. Coppo, M. Dezani-Ciancaglini. A filter lambda model and the completeness of type assignment. J. of Symbolic Logic 48, 1983.Google Scholar
  5. 5.
    G. Boudol. A Lambda-Calculus for Parallel Functions. Technical Report 1231, INRIA Sophia-Antipolis. 1990.Google Scholar
  6. 6.
    G. Boudol. The lambda calculus with multiplicities. Technical Report 2025, INRIA Sophia-Antipolis. 1993.Google Scholar
  7. 7.
    G. Boudol. Lambda-calculi for (strict) parallel functions. Information and Computation, 108(1). 1994.Google Scholar
  8. 8.
    G. Boudol, C. Laneve. The discriminating power of multiplicities in the λ-calculus. Technical Report 2441, INRIA Sophia-Antipolis. 1994.Google Scholar
  9. 9.
    G. Boudol, C. Laneve. Termination, deadlock and divergence in the λ-calculus with multiplicities. To appear in the Proceedings of the 11th Mathematical Foundations of Programming Semantics Conference. 1995.Google Scholar
  10. 10.
    G. Boudol, C. Laneve. λ-Calculus, Multiplicities and the π-Calculus. Technical Report 2581, INRIA Sophia-Antipolis. 1995.Google Scholar
  11. 11.
    M. Coppo, M. Dezani-Ciancaglini. An extension of the basic functionality theory for the λ-calculus. Notre Dame Journal of Formal Logic 21. 1980.Google Scholar
  12. 12.
    M. Coppo, M. Dezani-Ciancaglini, F. Honsell, G. Longo. Extended type structures and filter lambda models. Logic Colloquium 82, North-Holland, 1984.Google Scholar
  13. 13.
    M. Coppo, M. Dezani-Ciancaglini, B. Venneri. Functional characters of solvable terms. Zeit. Math. Logik Grund, 27. 1981.Google Scholar
  14. 14.
    C. Lavatelli. Full Abstraction for an Extended Resource Language. Technical Report 95-18, LIENS — école Normale Supérieure. 1995.Google Scholar
  15. 15.
    C. Lavatelli. PhD. Thesis. Universitát Paris 7. France. 1996.Google Scholar
  16. 16.
    R. Milner. Functions as Processes. Mathematical Structures in Computer Science, 2. 1992.Google Scholar
  17. 17.
    C.-H. Luke Ong. The Lazy Lambda Calculus/ An Investigation into the Foundations of Functional Programming. PhD Thesis, Imperial College. 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Gérard Boudol
    • 1
  • Carolina Lavatelli
    • 2
  1. 1.INRIA - Sophia AntipolisSophia-AntipolisFrance
  2. 2.LIENS - école Normale SupérieureParisFrance

Personalised recommendations