Final semantics for a higher order concurrent language

  • Marina Lenisa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1059)


We show that adequate semantics can be provided for imperative higher order concurrent languages simply using syntactical final coalgebras. In particular we investigate and compare various behavioural equivalences on higher order processes defined by finality using hypersets and c.m.s. 's. Correspondingly, we derive various coinduction and mixed induction-coinduction proof principles for establishing these equivalences.


second order assignment F-coalgebra F-bisimulation final semantics operational semantics hyperset complete metric space coinduction mixed induction-coinduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.Aczel, Non-wellfounded sets, Number 14, Lecture Notes CSLI, 1988.Google Scholar
  2. 2. Bakker, F.van Breugel, Topological models for higher order control flow, MFPS'93 Conference Proc., Brookes et al. eds., Springer LNCS Vol.802, 1993.Google Scholar
  3. 3. Bakker, F.van Breugel, Metric Semantics for Second Order Communication, Technical Report, McGill University, Montreal, July 1995.Google Scholar
  4. 4.
    M.Barr, Terminal coalgebras in well-founded set theory, TCS, 114:299–315, 1993.Google Scholar
  5. 5.
    Barwise, Hypersets, The Mathematical Intelligencer, Vol.13(4):31–41, 1991.Google Scholar
  6. 6.
    M.Forti, F.Honsell, Set Theory with Free Construction Principles, Annali Scuola Normale Sup. Pisa, Cl. Sci., (IV), 10:493–522, 1983.Google Scholar
  7. 7.
    M.Forti, F.Honsell, M.Lenisa, Processes and Hyperuniverses, MFCS'94 Conference Proceedings, I.Privara et al. eds., Springer LNCS Vol.841:352–363, Košice, 1994.Google Scholar
  8. 8.
    P.Freyd, Algebraically complete categories, A.Carboni et al. eds, Category Theory '90 Springer LNM, Vol.1144:95–104, Como, 1992.Google Scholar
  9. 9.
    J.F.Groote, F.Vaandrager, Structured Operational Semantics and Bisimulation as a Congruence, Information and Computation Vol.100:202–260, 1992.Google Scholar
  10. 10.
    F.Honsell, M.Lenisa, Final Semantics for untyped λ-calculus, M.Dezani et al. eds, TLCA'95 Springer LNCS Vol.902:249–265, Edinburgh, 1995.Google Scholar
  11. 11.
    A.M.Pitts, Relational Properties of Recursively Defined Domains, 8th LICS Conference Proceedings, IEEE Computer Society Press:86–97, 1993.Google Scholar
  12. 12.
    J.J.M.M.Rutten, Processes as terms: non-wellfounded models for bisimulation, Math.Struct.Comp.Sci., Vol.2(3):257–275, 1992.Google Scholar
  13. 13.
    J.J.M.M.Rutten, D.Turi, On the Foundations of Final Semantics: Non-Standard Sets, Metric Spaces, Partial Orders, REX Conference Proceedings, J.deBakker et al. eds., Springer LNCS Vol.666:477–530, 1993.Google Scholar
  14. 14.
    J.J.M.M.Rutten, D.Turi, Initial algebra and final coalgebra semantics for concurrency, Report CS-R9409, CWI, Amsterdam, January 1994.Google Scholar
  15. 15.
    D.Sangiorgi, Expressing Mobility in Process Algebras: First-Oder and Higher-Order Paradigms, Ph.D thesis CST-99-93, University of Edinburgh, 1992.Google Scholar
  16. 16.
    B.Thomsen, A Calculus of Higher Order Communicating Systems, Proc. 16th Annual ACM Symp. on Principles of Programming Languages:143–154, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Marina Lenisa
    • 1
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversità di UdineItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaItaly

Personalised recommendations