Advertisement

Diophantine equations, Presburger arithmetic and finite automata

  • Alexandre Boudet
  • Hubert Comon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1059)

Abstract

We investigate the use of Büchi's techniques for Presburger arithmetic. More precisely, we show how to efficiently compute an automaton which accepts the set of solutions of a linear Diophantine equation (suitably encoded). Following Büchi, this gives a decision technique for the whole Presburger arithmetic. We show however how to compute more efficiently the automaton in the case of disequalities, inequalities and systems of linear Diophantine problems. We also show that such an “automaton algorithm” has a nearly optimal worst case complexity, both for the existential fragment and for the whole first-order theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Abdulrab and M. Maksimenko. General solutions of systems of linear diophantine equations and inequations. In J. Hsiang, editor, 6th International Conference on Rewriting Techniques and Applications, volume 914 of Lecture Notes in Computer Science, Kaiserslautern, Germany, Apr. 1995. Springer-Verlag.Google Scholar
  2. 2.
    J. Büchi. On a decision method in restricted second-order arithmetic. In E. e. a. Nagel, editor, Proc. Int. Congr. on logic, methodology and philosophy of science, Standford, 1960. Stanford Univ. Press.Google Scholar
  3. 3.
    E. Contejean and H. Devie. An efficient algorithm for solving systems of diophantine equations. Information and Computation, 113(1):143–172, Aug. 1994.Google Scholar
  4. 4.
    E. Domenjoud and A. P. Tomás. From elliotmac mahon to an algorithm for general linear constraints on naturals. In U. Montanari, editor, Principles and Practice of Constraint Programming, Cassis, France, Sept. 1995. To appear.Google Scholar
  5. 5.
    Elliot. On linear homogeneous diophantine equations. Quartely J. of Pure and Apllied Maths, 136, 1903.Google Scholar
  6. 6.
    J. Ferrante and C. W. Rackoff. The computational complexity of logical theories. Number 718 in Lecture Notes in Mathematics. Springer-Verlag, 1979.Google Scholar
  7. 7.
    A. Fortenbacher. An algebraic approach to unification under associativity and commutativity. In Proc. Rewriting Techniques and Applications 85, Dijon, LNCS 202. Springer-Verlag, May 1985.Google Scholar
  8. 8.
    P. MacMahon. Combinatory Analysis, volume 2, chapter II: A Syzygetic Theory, pages 111–114. Reprinted by Chelsea in 1960, 1919.Google Scholar
  9. 9.
    A. R. Meyer. Weak monadic second-order theory of successor is not elementary recursive. Manuscript, 1973.Google Scholar
  10. 10.
    M. Presburger. über die VollstÄndingen einer gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du premier Congrès des Mathématiciens des Pays slaves, Warszawa, 1929.Google Scholar
  11. 11.
    L. Stockmeyer and A. Meyer. Word problems requiring exponential time. In Proc. 5th ACM Symp. on Theory of Computing, pages 1–9, 1973.Google Scholar
  12. 12.
    W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 134–191. Elsevier, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Alexandre Boudet
    • 1
  • Hubert Comon
    • 1
  1. 1.Centre d'OrsayLRI, CNRS URA 410 Bât 490, Université Paris-SudOrsay CedexFrance

Personalised recommendations