Advertisement

Solving deductive planning problems using program analysis and transformation

  • D. A. de Waal
  • M. Thielscher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1048)

Abstract

Two general, problematic aspects of deductive planning, namely, detecting unsolvable planning problems and solving a certain kind of postdiction problem, are investigated. The work is based on a resource oriented approach to reasoning about actions and change using a logic programming paradigm. We show that ordinary resolution methods are insufficient for solving these problems and propose program analysis and transformation as a more promising and successful way to solve them.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Bibel. A Deductive Solution for Plan Generation. New Generation Computing, 4:115–132, 1986.Google Scholar
  2. 2.
    D.A. de Waal. Analysis and Transformation of Proof Procedures. PhD thesis, University of Bristol, October 1994.Google Scholar
  3. 3.
    D.A. de Waal and J.P. Gallagher. The applicability of logic program analysis and transformation to theorem proving. In A. Bundy, editor, Automated Deduction — CADE-12, pages 207–221. Springer-Verlag, 1994.Google Scholar
  4. 4.
    R. Fikes and N. Nilsson. STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. Artificial Intelligence Journal, 2:189–208, 1971.Google Scholar
  5. 5.
    J. Gallagher. A system for specialising logic programs. Technical Report TR-91-32, University of Bristol, November 1991.Google Scholar
  6. 6.
    J. Gallagher and M. Bruynooghe. Some low-level source transformations for logic Programs. In M. Bruynooghe, editor, Proceedings of Meta90 Workshop on Meta Programming in Logic, Leuven, Belgium, 1990.Google Scholar
  7. 7.
    J. Gallagher and D.A. de Waal. Fast and precise regular approximations of logic programs. In Proceedings of the Eleventh International Conference on Logic Programming, pages 599–613. MIT Press, 1994.Google Scholar
  8. 8.
    J. H. Gallier and S. Raatz. Extending SLD-Resolution to Equational Horn Clauses Using E-Unification. Journal of Logic Programming, 6:3–44, 1989.Google Scholar
  9. 9.
    F. Giunchiglia and T. Walsh. A Theory of Abstraction. Artificial Intelligence Journal, 56(2–3):323–390, October 1992.Google Scholar
  10. 10.
    G. Große, S. Hölldobler, J. Schneeberger, U. Sigmund and M. Thielscher. Equational Logic Programming, Actions and Change. In K. Apt, editor, Proceedings of IJCSLP, pages 177–191, Washington, 1992. The MIT Press.Google Scholar
  11. 11.
    P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of Prolog using type graphs. Technical report, Brown University, Department of Computer Science, December 1993.Google Scholar
  12. 12.
    P.M. Hill and J.W. Lloyd. Analysis of meta-programs. In Meta-Programming in Logic Programming, pages 23–52. The MIT Press, 1989.Google Scholar
  13. 13.
    S. Hölldobler. Foundations of Equational Logic Programming, volume 353 of LNAI. Springer-Verlag, 1989.Google Scholar
  14. 14.
    S. Hölldobler and J. Schneeberger. A New Deductive Approach to Planning. New Generation Computing, 8:225–244, 1990.Google Scholar
  15. 15.
    S. Hölldobler and M. Thielscher. Computing change and specificity with equational logic programs. Annals of Mathematics and Artificial Intelligence, 14(1):99–133, 1995.Google Scholar
  16. 16.
    V. Lifschitz. On the Semantics of STRIPS. In M. P. Georgeff and A. L. Lansky, editors, Proceedings of the Workshop on Reasoning about Actions & Plans. Morgan Kaufmann, 1986.Google Scholar
  17. 17.
    J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.Google Scholar
  18. 18.
    K. Marriott and H. Søndergaard. Bottom-up dataflow analysis of logic programs. Journal of Logic Programming, 13:181–204, 1992.Google Scholar
  19. 19.
    M. Masseron, C. Tollu, and J. Vauzielles. Generating Plans in Linear Logic I. Actions as Proofs. Theoretical Computer Science, 113:349–370, 1993.Google Scholar
  20. 20.
    J. McCarthy. Situations and Actions and Causal Laws. Stanford Artificial Intelligence Project, Memo 2, 1963.Google Scholar
  21. 21.
    J. McCarthy and P.J. Hayes. Some Philosophical Problems from the Standpoint of Artificial Intelligence. Machine Intelligence, 4:463–502, 1969.Google Scholar
  22. 22.
    K.H. Munch. A new reduction rule for the connection graph proof procedure. Journal of Automated Reasoning, 4:425–444, 1988.Google Scholar
  23. 23.
    D. Plaisted. Abstraction mappings in mechanical theorem proving. Automated Deduction-CADE-5, pages 264–280. Springer-Verlag, 1980.Google Scholar
  24. 24.
    E. Yardeni and E.Y. Shapiro. A type system for logic programs. Journal of Logic Programming, 10(2):125–154, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • D. A. de Waal
    • 1
  • M. Thielscher
    • 1
  1. 1.FG Intellektik, FB InformatikTechnische Hochschule DarmstadtGermany

Personalised recommendations