Optimal schedules for d-D grid graphs with communication delays

Extended abstract
  • E. Bampis
  • C. Delorme
  • J. -C. König
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1046)


We consider a task graph model taking into account the communication among tasks of a parallel system. First, we assume that the available number of processors is adequate for dealing with the whole width of the task graph (i.e. the number of processors is unbounded), and we propose a schedule, called Line-Schedule, which executes the tasks of a d-dimensional grid graph (d-D grid in short) in the optimal time. We continue by proving that Line-Schedule is the only strategy able to execute a d-D grid in the optimal time. Furthermore, we compute the minimum number of processors required to execute a d-D grid optimally.

Key words

scheduling communication grids DAGs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aggarwal, A. K. Chandra, M. Snir, Communication complexity of PRAMs, Theoretical Computer Science 71 3–28 (1990).CrossRefGoogle Scholar
  2. 2.
    A. V. Aho, J. E. Hopcroft, J. D. UllmanThe Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA (1974).Google Scholar
  3. 3.
    R.J. Anderson, P. Beame, W. Ruzzo, Low overhead parallel schedules for task graphs, Proc. ACM Symp. Parallel Algorithms and Architectures 66–75 (1990).Google Scholar
  4. 4.
    E. Bampis, C. Delorme, J-C. König, Optimal Schedules for d-D Grid Graphs with Communication Delays, Technical Report N∘ 4, LaMI, University of Evry.Google Scholar
  5. 5.
    E. Bampis, J-C. König, D. Trystram, A Low overhead schedule for a 3D-Grid Graph, Parallel Processing Letters 2 4 363–372 (1992).CrossRefGoogle Scholar
  6. 6.
    C. G. Bell, Gordon Bell on the future of computers, interview in SIAM NEWS, February 1987.Google Scholar
  7. 7.
    G. Birkhoff, S. MacLane, Algebra, 2nd Edition, Macmillan, (1979).Google Scholar
  8. 8.
    E.G. Coffman, P.J. Denning, Operating Systems Theory, Prentice Hall (1972).Google Scholar
  9. 9.
    Y. Colin, P. Chretienne, CPM scheduling with small interprocessor communication delays, Operation Research 39 3 680–684 (1991).Google Scholar
  10. 10.
    R.L. Graham, D.E. Knuth, O. Patashnik Concrete Mathematics, Addison-Wesley, (1989).Google Scholar
  11. 11.
    J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley (1979).Google Scholar
  12. 12.
    H. Jung, L, Kirousis, P. Spirakis, Lower bounds and efficient algorithms for multiprocessor scheduling of DAGs with communication delays, Proc. ACM Symp. Parallel Algorithms and Architectures (1989) 254–264, and Information and Computation 105 94–104 (1993).Google Scholar
  13. 13.
    C. Papadimitriou, J. Ullman, A Communication Time Tradeoff, SIAM J. on Computing 16 4 639–646 (1987).CrossRefGoogle Scholar
  14. 14.
    C. Papadimitriou, M. Yannakakis, Towards an architecture-independent analysis of parallel algorithms, SIAM J. on Computing 19 2 322–328 (1990).CrossRefGoogle Scholar
  15. 15.
    C. Picouleau, Etude des Problèmes d'Optimisation dans les Systèmes Distribués, Ph D Thesis, University Paris VI, France (1993).Google Scholar
  16. 16.
    V.J. Rayward-Smith, UET scheduling with unit interprocessor communication delays, Discrete Applied Mathematics 18 55–71 (1987).CrossRefGoogle Scholar
  17. 17.
    H. Wilf, Generatingfunctionology, Academic Press (1990).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • E. Bampis
    • 1
  • C. Delorme
    • 2
  • J. -C. König
    • 1
  1. 1.La.M.I.Université d'EvryEvry CedexFrance
  2. 2.L.R.I, URA 410Université de Paris SudOrsay CedexFrance

Personalised recommendations