Minimal forbidden words and symbolic dynamics

  • Marie -Pierre Béal
  • Filippo Mignosi
  • Antonio Restivo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1046)


We introduce a new complexity measure of a factorial formal language L: the growth rate of the set of minimal forbidden words. We prove some combinatorial properties of minimal forbidden words. As main result we prove that the growth rate of the set of minimal forbidden words for L is a topological invariant of the dynamical system defined by L.


Automata and Formal Languages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Adler, D. Coppersmith, M. Hassner. Algorithms for Sliding-Block Codes, IEEE Trans. Inf. Theory, IT-29 (1983), 5–22.CrossRefGoogle Scholar
  2. 2.
    R. Badii. Quantitave Characterization of Complexity and Predictability, Physics Letters A 160 (1991), 372–377.Google Scholar
  3. 3.
    R. Badii. Complexity and Unpredictable Scaling of Hierarchical Structures, in “Chaotic Dynamics: Theory and Practice”, T. Bountis Ed., Plenum Press, New York, 1992.Google Scholar
  4. 4.
    M. P. Béal. Codage Symbolique, Masson, 1993.Google Scholar
  5. 5.
    J. Berstel. Fibonacci Words — a Survey, in “The Book of L”, G. Rozenberg, A. Salomaa eds., Springer Verlag 1986.Google Scholar
  6. 6.
    J. Cassaigne. Complexité et Facteurs Spéciaux, Actes des Journées Montoises, 1994.Google Scholar
  7. 7.
    A. de Luca, F. Mignosi. Some Combinatorial Properties of Sturmian Words, Theor. Comp. Science, 136 (1994), 361–385.CrossRefGoogle Scholar
  8. 8.
    A. de Luca, L. Mione. On Bispecial Factors of the Thue-Morse Word, Inf. Proc. Lett., 49 (1994), 179–183.CrossRefGoogle Scholar
  9. 9.
    S. Eilenberg. Automata, Languages, Machines, Vol. A, Academic Press, 1974.Google Scholar
  10. 10.
    G. A. Hedlund. Endomorphisms and Autorphisms of the Shift Dynamical System, Math. System Theory, 3 (1969), 320–375.CrossRefGoogle Scholar
  11. 11.
    K. H. Kim, F. W. Roush. Williams Conjecture is False for Reducible Matrices, J. Amer. Math. Soc. 5 (1992), 213–125.Google Scholar
  12. 12.
    M. Lothaire. Combinatorics on Words, Addison-Wesley, Reading, MA 1983.Google Scholar
  13. 13.
    H. A. Maurer, M. Nivat. Rational bijections of rational sets, Acta Informatica 13 (1980), 365–378.CrossRefGoogle Scholar
  14. 14.
    R. McNaughton, S. Papert. Counter-Free Automata, M.I.T. Press, MA 1970.Google Scholar
  15. 15.
    M. Morse. Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 84–110.MathSciNetGoogle Scholar
  16. 16.
    D. Perrin. Symbolic Dynamics and Finite Automata, invited lecture in Proc. MFCS'95, Lect. Notes in Comp. Sci., 969.Google Scholar
  17. 17.
    G. Rauzy, Mots infinis en arithmétique in “Automata on Infinite words”, M. Nivat and D. Perrin eds., Lecture Notes in Comp. Science, 192, Springer, Berlin 1984.Google Scholar
  18. 18.
    R. Williams. Classification of shifts of finite type, Annals of Math., 98 (1973), 120–153. Errata, Annals of Math., 99 (1974), 380–381.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Marie -Pierre Béal
    • 1
  • Filippo Mignosi
    • 2
  • Antonio Restivo
    • 2
  1. 1.LITP - Institut Blaise PascalUniversité Denis DiderotParis cedex 05
  2. 2.Dipartimento di Matematica ed ApplicazioniUniversity of PalermoPalermo

Personalised recommendations