A unified and generalized treatment of authentication theory

  • Ueli M. Maurer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1046)


This paper provides a unified and generalized treatment of information-theoretic lower bounds on an opponent's probability of cheating in one-way message authentication. It extends and generalizes, in a number of directions, the substantial body of known results, each of which holds only for a certain restricted scenario. At the same time the treatment of unconditionally-secure authentication is simplified considerably.


Cryptography unconditionally-secure authentication information theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Blahut, Principles and practice of information theory, Addison-Wesley, 1987.Google Scholar
  2. 2.
    E.F. Brickell, A few results in message authentication, Congressus Numerantium, vol. 43, pp. 141–154, 1984.Google Scholar
  3. 3.
    V. Fåk, Repeated use of codes which detect deception, IEEE Trans. on Information Theory, Vol. 25, No. 2, 1979, pp. 233–234.CrossRefGoogle Scholar
  4. 4.
    E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane, Codes which detect deception, Bell Syst. Tech. J., Vol. 53, No. 3, 1974, pp. 405–424.Google Scholar
  5. 5.
    R. Johannesson and A. Sgarro, Strengthening Simmons' bound on impersonation, IEEE Trans. on Information Theory, Vol. 37, No. 4, 1991, pp. 1182–1185.CrossRefGoogle Scholar
  6. 6.
    T. Johansson, Lower bounds on the probability of deception in authentication with arbitration, IEEE Trans. on Information Theory, Vol. 40, No. 5, 1994, pp. 1573–1585.CrossRefGoogle Scholar
  7. 7.
    J.L. Massey, Contemporary cryptology — an Introduction, in Contemporary cryptology — the science of information integrity, G.J. Simmons (Ed.), IEEE Press, 1992.Google Scholar
  8. 8.
    R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, Vol. 21, No. 2, 1978, pp. 120–126.CrossRefGoogle Scholar
  9. 9.
    U. Rosenbaum, A lower bound on authentication after having observed a sequence of messages, J. of Cryptology, Vol. 6, No. 3, 1993, pp. 135–156.Google Scholar
  10. 10.
    A. Sgarro, Information divergence bounds for authentication codes, Advances in Cryptology — Eurocrypt '89, J.-J. Quisquater and J. Vandewalle (Eds.), Lecture Notes in Computer Science, No. 434. Berlin: Springer Verlag, 1985, pp. 93–101.Google Scholar
  11. 11.
    C. E. Shannon, Communication theory of secrecy systems, Bell System Technical Journal, Vol. 28, Oct. 1949, pp. 656–715.Google Scholar
  12. 12.
    G. J. Simmons, Authentication theory/coding theory, in Advances in Cryptology — CRYPTO 84, G.R. Blakley and D. Chaum (Eds.), Lecture Notes in Computer Science, No. 196, Berlin: Springer Verlag, 1985, pp. 411–431.Google Scholar
  13. 13.
    G.J. Simmons and B. Smeets, A paradoxical result in unconditionally secure authentication codes — and an explanation, in Cryptography and Coding II, C. Mitchell, Ed., Oxford: Clarendon, 1992, pp. 231–258.Google Scholar
  14. 14.
    B. Smeets, Bounds on the Probability of Deception in Multiple Authentication, IEEE Trans. on Information Theory, Vol. 40, No. 5, 1994, pp. 1586–1591.CrossRefGoogle Scholar
  15. 15.
    B. Smeets, P. Vanroose, and Zhe-Xian Wan, On the construction of authentication codes with secrecy and codes which stand against spoofing attacks of order L ≥ 2, Advances in Cryptology — Eurocrypt '90, I.B. Damgård, Ed., Lecture Notes in Computer Science, No. 473, Berlin: Springer Verlag, 1991, pp.306–312.Google Scholar
  16. 16.
    D. R. Stinson, Some constructions and bounds for authentication codes, J. of Cryptology, Vol. 1, No. 1, 1988, pp 37–51.Google Scholar
  17. 17.
    M. Walker, Information-theoretic bounds for authentication schemes, J. of Cryptology, Vol 2, No. 3, 1990, pp. 131–143.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Ueli M. Maurer
    • 1
  1. 1.Institute for Theoretical Computer ScienceETH ZürichZürichSwitzerland

Personalised recommendations