Advertisement

A decision procedure for well-formed linear quantum cellular automata

  • Christoph Dürr
  • Huong Lê Thanh
  • Miklos Santha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1046)

Abstract

In this paper we introduce a new quantum computation model, the linear quantum cellular automaton. Well-formedness is an essential property for any quantum computing device since it enables us to define the probability of a configuration in an observation as the squared magnitude of its amplitude. We give an efficient algorithm which decides if a linear quantum cellular automaton is well-formed. The complexity of the algorithm is O(n2) if the input automaton has continuous neighborhood.

Classification of topics

algorithms automata and formal languages computational complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AP72]
    S. Amoroso and Y. Patt, Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures, Journal of Computer and System Sciences 6, 448–464, 1972.Google Scholar
  2. [BB92]
    A. Berthiaume and G. Brassard, The Quantum Challenge to Structural Complexity Theory, Proceeding of the 7th IEEE Conference on Structure in Complexity Theory, 132–137, 1992.Google Scholar
  3. [Bel58]
    R. Bellman, On a routing problem, Quarterly of Applied Mathematics, 16(1):87–90, 1958.Google Scholar
  4. [Bia94]
    M. Biafore, Can Computers Have Simple Hamiltonians? MIT Physics of Computation Seminar ftp://im.lcs.mit.edu/poc/biafore, 1994.Google Scholar
  5. [BV93]
    E. Bernstein and U. Vazirani, Quantum complexity theory, Proceeding of the 25th ACM Symposium on the Theory of Computing, 11–20, 1993.Google Scholar
  6. [CLR90]
    T. Cormen, C. Leiserson and R. Rivest, Introduction to Algorithms, The MIT Press, 1990.Google Scholar
  7. [Deu85]
    D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proceeding of the Royal Society of London, A400:97–117, 1985.Google Scholar
  8. [DJ92]
    D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proceeding of the Royal Society of London, A439:553–558, 1992.Google Scholar
  9. [Fey82]
    R. Feynman, Simulating physics with computers, International Journal of Theoretical Physics 21 467–488, 1982.MathSciNetGoogle Scholar
  10. [Fey86]
    R. Feynman, Quantum Mechanical Computers, Foundations of Physics 16, 507, 1986.Google Scholar
  11. [FF62]
    L. Ford and D. Fulkerson, Flows in Networks, Princeton University Press, 1962.Google Scholar
  12. [Jozs91]
    R. Jozsa, Characterizing classes of functions computable by quantum parallelism, Proceeding of the Royal Society of London, A435:563–574, 1991.Google Scholar
  13. [Llo93]
    S. Lloyd, A potentially realizable Quantum Computer, Science 261, 1569–1571, 1993.Google Scholar
  14. [Llo94]
    S. Lloyd, Envisioning a Quantum Supercomputer, Science 263, 695, 1994.Google Scholar
  15. [Mar94]
    N. Margolus, Parallel Quantum Computation, MIT Physics of Computation Seminar ftp://im.lcs.mit.edu/poc/margyolus, 1994.Google Scholar
  16. [Sim94]
    D. Simon, On the Power of Quantum Computation, Proceeding of the 34th IEEE Symposium on Foundations of Computer Science, 116–123, 1994.Google Scholar
  17. [Sho94]
    P. Shor, Algorithms for Quantum Computation: Discrete Log and Factoring Proceeding of the 26th ACM Symposium on the Theory of Computing, 124–134, 1994Google Scholar
  18. [Sut9l]
    K. Sutner, De Bruijn graphs and cellular automata, Complex Systems, 5:19–30, 1991.Google Scholar
  19. [Tar75]
    R. Tarjan, Depth first search and linear graph algorithms, SIAM Journal on Computing, 1(2):146–160, 1972.CrossRefGoogle Scholar
  20. [Wat95]
    J. Watrous, On one dimensional quantum cellular automata, Proceeding of the 36th IEEE Symposium on Foundations of Computer Science, 528–537, 1995.Google Scholar
  21. [Yao93]
    A. Yao, Quantum circuit complexity, Proceeding of the 34th IEEE Symposium on Foundations of Computer Science, 352–361, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Christoph Dürr
    • 1
  • Huong Lê Thanh
    • 1
  • Miklos Santha
    • 2
  1. 1.Université Paris-Sud, LRIOrsay CedexFrance
  2. 2.CNRS, URA 410Université Paris-Sud, LRIOrsay CedexFrance

Personalised recommendations