Trace rewriting: Computing normal forms in time O(n log n)

  • Michael Bertol
  • Volker Diekert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1046)


We develop an O(n log n) algorithm for computing normal forms in the case of finite weight-reducing trace rewriting systems with connected left-hand sides. The time complexity of previously known algorithms solving this problem has been square time in the worst-case.


Mazurkiewicz traces rewriting modulo a partial commutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Aho, J. E. Hopcroft and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, M.A., 1974.Google Scholar
  2. 2.
    M. Bertol. Efficient rewriting in cograph trace monoids. In Proceedings of the Fundamentals of Computation Theory (FCT '95), Dresden (Germany) 1995, Lecture Notes in Computer Science, Berlin-Heidelberg-New York, 1995. Springer.Google Scholar
  3. 3.
    M. Bertol and V. Diekert. On efficient reduction-algorithms for some trace rewriting systems. In H. Common and J.-P. Jouannaud, editors, Proceedings of the Term Rewriting., number 909 in Lecture Notes in Computer Science, pages 114–126, Berlin-Heidelberg-New York, 1993. Springer.Google Scholar
  4. 4.
    R. Book. Confluent and other types of Thue systems. J. Assoc. Comput. Mach., 29:171–182, 1982.Google Scholar
  5. 5.
    R.V. Book and F. Otto. String Rewriting Systems. Texts and Monographs in Computer Science. Springer Verlag, New York, 1993.Google Scholar
  6. 6.
    P. Cartier and D. Foata. Problèmes combinatoires de commutation et réarrangements. Number 85 in Lecture Notes in Mathematics. Springer, Berlin-Heidelberg-New York, 1969.Google Scholar
  7. 7.
    M. Clerbout. Commutations Partielles et Familles de Langages. Thèse, Université des Sciences et Technologies de Lille (France), 1984.Google Scholar
  8. 8.
    M. Clerbout, M. Latteux, Y. Roos, and P. Wacrenier. A result on confluence for one-rule trace-rewriting systems. Technical Report IT-95-275, Laboratoire d'Informatique Fondamentale de Lille, Universite des Sciences et Technologies de Lille, Apr. 1995.Google Scholar
  9. 9.
    R. Cori and D. Perrin. Automates et commutations partielles. R.A.I.R.O. — Informatique Théorique et Applications, 19:21–32, 1985.Google Scholar
  10. 10.
    V. Diekert. On the Knuth-Bendix completion for concurrent processes. In Th. Ottmann, editor, Proceedings of the 14th International Colloquium on Automata, Languages and Programming (ICALP'87), Karlsruhe (FRG) 1987, number 267 in Lecture Notes in Computer Science, pages 42–53, Berlin-Heidelberg-New York, 1987. Springer. Appeared also in a revised version in Theoretical Computer Science 66:117–136, 1989.Google Scholar
  11. 11.
    V. Diekert. Word problems over traces which are solvable in linear time. In B. Monien et al., editors, Proceedings of the 6th Annual Symposium on Theoretical Aspects of Computer Science (STACS'89), Paderborn (FRG) 1989, number 349 in Lecture Notes in Computer Science, pages 168–180, Berlin-Heidelberg-New York, 1989. Springer. Revised and extended version in Theoretical Computer Science 74 (1990) 3–18.Google Scholar
  12. 12.
    V. Diekert. Combinatorics on Traces. Number 454 in Lecture Notes in Computer Science. Springer, Berlin-Heidelberg-New York, 1990.Google Scholar
  13. 13.
    V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore, 1995.Google Scholar
  14. 14.
    M. Jantzen. Confluent String Rewriting. EATCS Monographs on Theoretical Computer Science 14. Springer, Berlin-Heidelberg-New York, 1988.Google Scholar
  15. 15.
    R. Keller. Parallel program schemata and maximal parallelism I. Fundamental results. Journal of the Association of Computing Machinery, 20:514–537, 1973.Google Scholar
  16. 16.
    M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading, M.A., 1983.Google Scholar
  17. 17.
    E. W. Mayr and A. R. Meyer. The complexity of the word problems for commutative semigroups and polynomial ideals. Advances in Math., 46:305–329, 1982.CrossRefGoogle Scholar
  18. 18.
    A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.Google Scholar
  19. 19.
    P. Narendran and F. Otto. Preperfectness is undecidable for Thue systems containing only length-reducing rules and a single commutation rule. Information Processing Letters, 29:125–130, 1988.CrossRefGoogle Scholar
  20. 20.
    F. Otto. On confluence versus strong confluence for one-rule trace-rewriting systems. Mathematical Systems Theory, 28:363–384, 1995.CrossRefGoogle Scholar
  21. 21.
    C. Wrathall and V. Diekert. On confluence of one-rule trace-rewriting systems. Mathematical Systems Theory, 28:341–361, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Michael Bertol
    • 1
  • Volker Diekert
    • 1
  1. 1.Institut für InformatikUniversität StuttgartStuttgart

Personalised recommendations