On word-level parallelism in fault-tolerant computing

  • Piotr Indyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1046)

Abstract

In this paper we present several simulations of operational PRAM on PRAM with memory or processor faults. Their common property is that they rely on the ability of performing standard boolean or arithmetic operations on words consisting of many bits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Afek, D.S. Greenberg, M. Merrit, G.Taubenfeld, Computing with Faulty Shared Memory, Proc. 11th Ann. Symposium on Principles of Distributed Computing (1992), 47–58.Google Scholar
  2. 2.
    A. Andersson, T. Hagerup, S. Nilsson, R. Raman, Sorting in Linear Time ?, Proc. 27th Annual ACM Symposium on Theory of Computing (1995).Google Scholar
  3. 3.
    A.V. Aho, J.E. Hopcroft, J.D. Ullman, ”The Design and Analysis of Computer Algorithms”, Addison-Wesley (1974).Google Scholar
  4. 4.
    Y. Aumann, Z.M. Kedem, K.V. Palem, M.O. Rabin, Highly Efficient Asynchronous Execution of Large-Grained Parallel Programs, Proc. 34th Ann. Symposium on Foundations of Computer Science (1993), 271–280.Google Scholar
  5. 5.
    R.J. Anderson, G.L. Miller, Optical Communication for Pointer Based Algorithms, Tech. Rep. CRI 88-14, Comp. Sci. Dept., University of Southern California, Los Angeles, 1988.Google Scholar
  6. 6.
    B.S. Chlebus, A. Gambin, P. Indyk, PRAM Computations Resilient to Memory Faults, Proc. 2nd European Symposium on Algorithms (1994), 401–412, Springer LNCS 855.Google Scholar
  7. 7.
    B.S. Chlebus, A. Gambin, P. Indyk, Shared Memory Simulations on Faulty DMM (1995), submitted.Google Scholar
  8. 8.
    B.S. Chlebus, L. Gcasieniec, A. Pelc, Fast Deterministic Computations on a Faulty PRAM, Proc. 3rd European Symposium on Algorithms (1995), 89–101, Springer LNCS 979.Google Scholar
  9. 9.
    C. Clos, A study of nonblocking switching networks, The Bell System Technical Journal 32 (1953), 406–424.Google Scholar
  10. 10.
    K. Diks, A. Pelc, Reliable Computations on Faulty EREW PRAM, Theoretical Computer Science, to appear.Google Scholar
  11. 11.
    F. Meyer auf der Heide, Hashing Strategies for Simulating Shared Memory on Dbtributed Memory Machines, in Proceedings of the 1st Heinz Nixdorf Symposium “Parallel Architectures and their Efficient Use,” F. Meyer auf der Heide, B. Monien, A.L. Rosenberg (Eds.), Paderborn, Germany, 1992, Springer LNCS 678, pp. 20–29.Google Scholar
  12. 12.
    M. L. Fredman, D. E. Willard,’ BLASTING Through The Information Theoretic Bound Using FUSION TREES', Proc. 22nd Ann. ACM Symposium on Theory of Computing (1990).Google Scholar
  13. 13.
    R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, Massachusetts, MIT Press (1963).Google Scholar
  14. 14.
    T. Hagerup, Ch. Rüb, A Guided Tour of Chernoff Bounds, Inf. Proc. Letters 33 (1989/90), 305–308.CrossRefGoogle Scholar
  15. 15.
    J. JáJá, ”An Introduction to Parallel Algorithms,” Addison-Wesley (1992).Google Scholar
  16. 16.
    P. Jayanti, T.D. Chandra, S. Toueg, Fault-tolerant Wait-free Shared Objects, Proc. 33rd Ann. Symposium on Foundations of Computer Science (1992), 157–166.Google Scholar
  17. 17.
    P.C. Kanellakis, A.A. Shvartsman, Efficient Parallel Algorithms Can Be Made Robust, Distributed Computing, 5 (1992), 201–217.Google Scholar
  18. 18.
    Z.M. Kedem, K.V. Palem, P.G. Spirakis, Efficient Robust Parallel Computations, Proc. 22nd Ann. ACM Symposium on Theory of Computing (1990), 138–148.Google Scholar
  19. 19.
    F.T. Leighton, ”Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,” Morgan Kaufmann (1992).Google Scholar
  20. 20.
    F.J. MacWilliams, N.J.A Sloane, ”The Theory of Error-Correcting Codes,” North-Holland (1977).Google Scholar
  21. 21.
    R. Raman, Exploiting the Word-Level Parallelism in Sequential Algorithms, a talk given during the 5th Workshop on Algorithms for Future Technologies ALTEC V, Prague (1995). Also as [2]Google Scholar
  22. 22.
    A. Siegel, On Universal Classes of Fast High Performance Hash Functions, Their Time-Space Trade-off, and Their Applications, Proc. 30th Annual Symposium on Foundations of Computer Science, 1989, pp. 20–25.Google Scholar
  23. 23.
    D. A. Spielman, Linear-Time Encodable and Decodable Error-Correcting Codes, Proc. 27th Annual ACM Symposium on Theory of Computing (1995).Google Scholar
  24. 24.
    M. Sipser, D. A. Spielman, Expander Codes, Proc. 35th Annual Symposium on Foundations of Computer Science (1994), 566–576.Google Scholar
  25. 25.
    M. G. Taylor, Reliable Information Storage in Memories Designed from Unreliable Components, The Bell System Technical Journal 47 (1968), 2299–2337.Google Scholar
  26. 26.
    M. G. Taylor, Reliable Computation in Computing Systems Designed from Unreliable Components, The Bell System Technical Journal 47 (1968), 2339–2366.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Piotr Indyk
    • 1
  1. 1.Computer Science DepartmentStanford UniversityUSA

Personalised recommendations