ScaLAPACK: A portable linear algebra library for distributed memory computers — Design issues and performance

  • J. Choi
  • J. Demmel
  • I. Dhillon
  • J. Dongarra
  • S. Ostrouchov
  • A. Petitet
  • K. Stanley
  • D. Walker
  • R. C. Whaley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1041)

Abstract

This paper outlines the content and performance of ScaLA-PACK, a collection of mathematical software for linear algebra computations on distributed memory computers. The importance of developing standards for computational and message passing interfaces is discussed. We present the different components and building blocks of ScaLAPACK. This paper outlines the difficulties inherent in producing correct codes for networks of heterogeneous processors. Finally, this paper briefly describes future directions for the ScaLAPACK library and concludes by suggesting alternative approaches to mathematical libraries, explaining how ScaLAPACK could be integrated into efficient and user-friendly distributed systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. “LAPACK Users' Guide”. SIAM, Philadelphia, PA, 1992.Google Scholar
  2. 2.
    E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. “LAPACK Users' Guide, Second Edition”. SIAM, Philadelphia, PA, 1995.Google Scholar
  3. 3.
    J. Choi, J. Dongarra, and D. Walker. “Parallel Matrix Transpose Algorithms on Distributed Concurrent Computers”. Technical Report UT CS-93-215, LAPACK Working Note #65, University of Tennessee, 1993.Google Scholar
  4. 4.
    J. Demmel and K. Stanley. “The Performance of Finding Eigenvalues and Eigenvectors of Dense Symmetric Matrices on Distributed Memory Computers”. In Proceedings of the Seventh SIAM Conference on Parallel Proceesing for Scientific Computing. SIAM, 1994.Google Scholar
  5. 5.
    J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. “A Set of Level 3 Basic Linear Algebra Subprograms”. ACM Transactions on Mathematical Software, 16(1):1–17, 1990.CrossRefGoogle Scholar
  6. 6.
    J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. “Algorithm 656: An extended Set of Basic Linear Algebra Subprograms: Model Implementation and Test Programs”. ACM Transactions on Mathematical Software, 14 (1):18–32, 1988.Google Scholar
  7. 7.
    J. Dongarra and R. van de Geijn. “Two dimensional Basic Linear Algebra Communication Subprograms”. Technical Report UT CS-91-138, LAPACK Working Note #37, University of Tennessee, 1991.Google Scholar
  8. 8.
    J. Dongarra, R. van de Geijn, and D. Walker. “A Look at Scalable Dense Linear Algebra Librairies”. Technical Report UT CS-92-155, LAPACK Working Note #43, University of Tennessee, 1992.Google Scholar
  9. 9.
    J. Dongarra and R. C. Whaley. “A User's Guide to the BLACS v1.0”. Technical Report UT CS-95-281, LAPACK Working Note #94, University of Tennessee, 1995.Google Scholar
  10. 10.
    Message Passing Interface Forum. “MPI: A Message-Passing Interface standard”. International Journal of Supercomputer Applications, 8(3/4), 1994.Google Scholar
  11. 11.
    G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. “Solving Problems on Concurrent Processors”, volume 1. Prentice Hall, Englewood Cliffs, N.J, 1988.Google Scholar
  12. 12.
    R. Hanson, F. Krogh, and C. Lawson. “A Proposal for Standard Linear Algebra Subprograms”. ACM SIGNUM Newsl, 8(16), 1973.Google Scholar
  13. 13.
    W. Hsu, G. Thanh Nguyen, and X. Jiang. “Going Beyond Binary”. http://www.cs.berkeley.edu/ xjiang/cs258/project_1.html, 1995. CS 258 Class project.Google Scholar
  14. 14.
    C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. “Basic Linear Algebra Subprograms for Fortran Usage”. ACM Transactions on Mathematical Software, 5(3):308–323, 1979.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. Choi
    • 1
  • J. Demmel
    • 2
  • I. Dhillon
    • 1
  • J. Dongarra
    • 1
    • 3
  • S. Ostrouchov
    • 1
  • A. Petitet
    • 1
  • K. Stanley
    • 1
  • D. Walker
    • 3
  • R. C. Whaley
    • 1
  1. 1.Department of Computer ScienceUniversity of TennesseeKnoxvilleUSA
  2. 2.Computer Science DivisionUniversity of CaliforniaBerkeleyUSA
  3. 3.Mathematical Sciences SectionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations