Advertisement

The cipher SHARK

  • Vincent Rijmen
  • Joan Daemen
  • Bart Preneel
  • Antoon Bosselaers
  • Erik De Win
Block Ciphers — Proposals
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1039)

Abstract

We present the new block cipher SHARK. This cipher combines highly non-linear substitution boxes and maximum distance separable error correcting codes (MDS-codes) to guarantee a good diffusion. The cipher is resistant against differential and linear cryptanalysis after a small number of rounds. The structure of SHARK is such that a fast software implementation is possible, both for the encryption and the decryption. Our C-implementation of SHARK runs more than four times faster than SAFER and IDEA on a 64-bit architecture.

Keywords

Diffusion Layer Block Cipher Round Function Data Encryption Standard Linear Cryptanalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AT95]
    C.M. Adams, S.E. Tavares, “Designing S-boxes for ciphers resistant to differential cryptanalysis,” Proc. of the 3rd symposium on State and Progress of Research in Cryptography, W. Wolfowicz, Ed., Fondazione Ugo Bordoni, 1993, pp. 181–190.Google Scholar
  2. [BS90]
    E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” Journal of Cryptology, Vol. 4, No. 1, 1991, pp. 3–72.Google Scholar
  3. [C94]
    D. Coppersmith, “The data encryption standard (DES) and its strength against attacks,” IBM Journal of Research and Development,Vol. 38, No. 3, May 1994, pp. 243–250.Google Scholar
  4. [DGV93]
    J. Daemen, R. Govaerts, J. Vandewalle, “Block ciphers based on modular arithmetic,” Proc. of the 3rd Symposium on the State and Progress of Research in Cryptography, W. Wolfowicz, Ed., Fondazione Ugo Bordoni, Roma, 1993, pp. 80–89.Google Scholar
  5. [DGV94]
    J. Daemen, R. Govaerts, J. Vandewalle, “Weak keys of IDEA,” Advances in Cryptology, Proc. Crypto '93, LNCS 773, D. Stinson, Ed., Springer-Verlag, 1994, pp. 224–231.Google Scholar
  6. [DGV94b]
    J. Daemen, R. Govaerts, J. Vandewalle, “A new approach to block cipher design,” Fast Software Encryption, LNCS 809, R. Anderson, Ed., Springer-Verlag, 1994, pp. 18–32.Google Scholar
  7. [D95]
    J. Daemen, “Cipher and hash function design strategies based on linear and differential cryptanalysis,” Doctoral Dissertation, March 1995, K.U.Leuven.Google Scholar
  8. [DT91]
    M.H. Dawson, S.E. Tavares, “An expanded set of S-box design criteria based on information theory,” Advances in Cryptology, Proc. Eurocrypt'91, LNCS 547, D.W. Davies, Ed., Springer-Verlag, 1991, pp. 352–367.Google Scholar
  9. [F73]
    H. Feistel, “Cryptography and computer privacy,” Scientific American, Vol. 228, No. 5, May 1973, pp. 15–23.Google Scholar
  10. [FNS75]
    H. Feistel, W.A. Notz, J.L. Smith, “Some cryptographic techniques for machine-to-machine data communications,” Proc. IEEE, Vol. 63, No. 11, November 1975, pp. 1543–1554.Google Scholar
  11. [FIPS46]
    Data Encryption Standard, Federal Information Processing Standard (FIPS), Publication 46, National Bureau of Standards, U.S. Department of Commerce, Washington D.C., January 1977.Google Scholar
  12. [ISO10116]
    “Information technology — Security techniques — Modes of operation of an n-bit block cipher algorithm,” IS 10116, ISO/IEC, 1991.Google Scholar
  13. [KMI91]
    K. Kim, T. Matsumoto, H. Imai, “A recursive construction method of S-boxes satisfying strict avalanche criterion,” Advances in Cryptology, Proc. Crypto'90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 564–575.Google Scholar
  14. [K95]
    L.R. Knudsen, “Truncated and higher order differentials,” Fast Software Encryption, LNCS 1008, B. Preneel, Ed., Springer-Verlag, 1995, pp. 196–211.Google Scholar
  15. [K96]
    L.R. Knudsen, “Truncated differentials of SAFER,” Fast Software Encryption (this volume), 1996.Google Scholar
  16. [LH94]
    S.K. Langford, M.E. Hellman, “Differential-linear cryptanalysis,” Advances in Cryptology, Proc. Crypto'94, LNCS 839, Y. Desmedt, Ed., Springer-Verlag, 1994, pp. 17–25.Google Scholar
  17. [MS77]
    F.J. MacWilliams, N.J.A. Sloane, “The Theory of Error-Correcting Codes,”, North-Holland, Amsterdam, 1977.Google Scholar
  18. [M94]
    J. Massey, “SAFER K-64: a byte-oriented block-ciphering algorithm,” Fast Software Encryption, LNCS 809, R. Anderson, Ed., Springer-Verlag, 1994, pp. 1–17.Google Scholar
  19. [M95]
    J. Massey, “SAFER K-64: One year later,” Fast Software Encryption, LNCS 1008, B. Preneel, Ed., Springer-Verlag, 1995, pp. 212–241.Google Scholar
  20. [M93]
    M. Matsui, “Linear cryptanalysis method for DES cipher,” Advances in Cryptology, Proc. Eurocrypt'93, LNCS 765, T. Helleseth, Ed., Springer-Verlag, 1994, pp. 386–397.Google Scholar
  21. [N91]
    K. Nyberg, “Perfect nonlinear S-boxes,” Advances in Cryptology, Proc. Eurocrypt'91, LNCS 547, D.W. Davies, Ed., Springer-Verlag, 1991, pp. 378–386.Google Scholar
  22. [N94]
    K. Nyberg, “Differentially uniform mappings for cryptography,” Advances in Cryptology, Proc. Eurocrypt'93, LNCS 765, T. Helleseth, Ed., Springer-Verlag, 1994, pp. 55–64.aaGoogle Scholar
  23. [O94]
    L. O'Connor, “On the distribution of characteristics in bijective mappings,” Advances in Cryptology, Proc. Eurocrypt'93, LNCS 765, T. Helleseth, Ed., Springer-Verlag, 1994, pp. 360–370.Google Scholar
  24. [PW72]
    W.W. Peterson, E.J. Weldon, “Error-Correcting Codes,” The MIT Press, Cambridge, 1972.Google Scholar
  25. [RP95]
    V. Rijmen, B. Preneel, “On weaknesses of non-surjective round functions,” Workshop on Selected Areas in Cryptography — SAC'95, Ottawa, May 18–19, 1995, pp. 100–106.Google Scholar
  26. [S94]
    B. Schneier, “Description of a new variable-length key, 64-bit block cipher (Blowfish),” Fast Software Encryption, LNCS 809, R. Anderson, Ed., Springer-Verlag, 1994, pp. 191–204.Google Scholar
  27. [SB95]
    B. Schneier, M. Blaze, “MacGuffin: an unbalanced Feistel network block cipher,” Fast Software Encryption, LNCS 1008, B. Preneel, Ed., Springer-Verlag, 1995, pp. 97–110.Google Scholar
  28. [V96]
    S. Vaudenay, “On the weak keys of Blowfish,” Fast Software Encryption (this volume), 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Vincent Rijmen
    • 1
  • Joan Daemen
    • 1
  • Bart Preneel
    • 1
  • Antoon Bosselaers
    • 1
  • Erik De Win
    • 1
  1. 1.Katholieke Universiteit Leuven, ESAT-COSICHeverleeBelgium

Personalised recommendations