Domain-related focus-shifting constraints in dialogues with knowledge based systems

  • Jens-Uwe Moeller
Issues in Discourse or Text Planning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1036)


Dialogues with knowledge based systems often are unsatisfactory to users, because they usually are exclusively oriented at the problem solving process. In contrast to that, naturally occuring domain-specific dialogues are structured in respect to a domain model. We extracted some heuristics which are a base for determining the discourse structure from a dialogue between an expert and novices. This dialogue occurs in a problem solving situation which can be characterised by the problem solving method hypothesis-and-test. The heuristics ensure a thematic coherence by adding information about the domain structure when shifting the focus of dialogue. We show, how the KADS modeling approach for knowledge-based systems could be extended to provide discourse plans that ensure the generation of coherent and hence understandable natural language dialogues. Starting out from a distribution of tasks between system and user we apply several rules which formalise the heuristics in a way that they might be used as a part of the knowledge engineering process.


focus dialogue coherence natural language generation knowledge based systems KADS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breuker, J., Jong, T. MODALITY — an analysis of functions, user control and communication in knowledge based systems. Tech. Rept. UvA-A4-PR-004, KADS-Report Esprit Projekt1098, Univ. Amsterdam, Dept. of Social Science Informatics, Amsterdam, 1988.Google Scholar
  2. 2.
    Neerincx, M., and Hurts, K. Integrating Human-Computer Interaction with Software Engineering. 1991, pp. 15.Google Scholar
  3. 3.
    Baier, H. EXTRA — Ein XPS für Transportmittelauswahl, Uni Dortmund, Dortmund, Diplomarbeit(1986).Google Scholar
  4. 4.
    Breuker, J. and Wielinga, B. Models of Expertise. In Proc. of the European Conference on Artificial Intelligence ECAI-86, 1986, pp. 306–318.Google Scholar
  5. 5.
    Breuker, J. and Greef, P. Modelling System-User Cooperation in KADS. In KADS — A Principled Approach to Knowledge-Based System Development, Academic Press, London, 1993, pp. 47–70.Google Scholar
  6. 6.
    Carberry, S. A pragmatics-based approach to ellipsis resolution. Computational Linguistics, 15(2) (1989), 75–96.Google Scholar
  7. 7.
    Chandrasekaran, B. Generic Tasks in Knowledge-Based Reasoning: High-Level Building Blocks for Expert System Design. IEEE Expert, Fall 86 (1986).Google Scholar
  8. 8.
    Clancey, W.J. and Letsinger, R. NEOMYCIN: Reconfiguring a Rule-Based Expert System for Application to Teaching. In Proc of Annual Meeting of the American Association of Artificial Intelligence, 1982, pp. 829–836.Google Scholar
  9. 9.
    Cohen, R. A Computational Model for the Analysis of Arguments. Tech. Rept. No. 151, Technical Report, University of Toronto, CDN, Dept. of Computer Science Toronto, CDN, 1983.Google Scholar
  10. 10.
    Fawcett, R.P. and Davies, B. Monologue as a Turn in Interactive Discourse: Towards an Integration of Exchange Structure and Rhetorical Structure Theory. In Sixth International Workshop on Natural Language Generation, Dale, Rösner, H., Trento Italy, 1992.Google Scholar
  11. 11.
    Garrod, S. and Sanford, A. Topic dependent effects in language processing. In The Process of Language Understanding, G. B. Flores D'Arcais; Jarvella, R.J., John Wiley and Sons Ltd., 1983, pp. 271–296.Google Scholar
  12. 12.
    Grosz, B.J. and Sidner, C.L. Attention, Intentions, and the Structure of Discourse. Computational Linguistics, 12 (1986), 175–204.Google Scholar
  13. 13.
    Hoare, C.A.R. Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs (1985).Google Scholar
  14. 14.
    Horacek, H. Towards Finding the Reasons Behind — Generating the Content of Explanation. In 15. Fachtagung für Künstliche Intelligenz, Christaller, T., Springer-Verlag, 1991.Google Scholar
  15. 15.
    Hovy, E.H. and McCoy, K.F. Focusing your RST: a step towards generating coherent multisentential text. In Proc. 11th Annula Conference of the Cognitive Science Society, Ann Arbor, MI, 1989, pp. 667–674.Google Scholar
  16. 16.
    Jullien, C. and Marty, J.C. Plan Revision in Person-Machine Dialogue. In Proc. European Conf. of the ACL, 1989, pp. 153–160.Google Scholar
  17. 17.
    Karbach, W. Entwurfsmethodiken für wissensbasierte Systeme. Ein überblick. Tech. Rept. Nr. 22, WEREX Bericht der GMD, 1988.Google Scholar
  18. 18.
    Karbach, W. and Voß, A. Reflecting about expert systems in MODEL-K. In Proc. 12th International Conf. on Expert Systems and their Applications 1992, Rault, R.C., EC2, Nanterre, 1992.Google Scholar
  19. 19.
    Klages, E. Fachdialogwissen im Expertengespräch über Transportmittelplanung. Tech. Rept. KI-NRW-92-10, KI-NRW Reports, Forschungsverbund, Anwendungen der KI in NRW, Wuppertal, Pr. Becks, 1992.Google Scholar
  20. 20.
    Löwgren, J. An Architecture for Expert System User Interface Design and Management. Tech. Rept. 89-50, Report, Univ. Linköping och Tekniska Högskolan, Institutionen för Datavetenskap, Linköping University, Dept. of Computer and Information Science, Linköping, 1989.Google Scholar
  21. 21.
    Lambert, L. A Tripartite Plan-Based Model of Dialogue. In Proc. 29th Annual Meeting of the ACL, 1991, pp. 47–54.Google Scholar
  22. 22.
    Litman, D.J. and Allen, J.F. A plan recognition model for subdialogues in conversation. Cognitive Science, 11 (1987), 163–200.Google Scholar
  23. 23.
    Möller, J.U. and Tammer, E.H.A. Differenzen und übereinstimmung von Fachdialogstrukturen in einem Wissensakquisitionsdialog Raumplanung im Vergleich zur Vorgehensweise von OFFICE-PLAN. Tech. Rept. KI-NRW 91-60, KI-NRW Reports, Forschungsverbund, Anwendungen der KI in NRW, Wuppertal, Pr. Becks, 1990.Google Scholar
  24. 24.
    McCoy, K.F. and Cheng, J. Focus of attention: Constraining what can be said next. In Natural Language Generation in Artificial Intelligence and Computational Linguis, Kluwer Academic Publishers, 1990, pp. 103–124.Google Scholar
  25. 25.
    McKeown, K.R. Focus Constraints on Language Generation. In Proceedings of Int. Joint Conf. on Artif. Intelligence, 1983, pp. 582–587.Google Scholar
  26. 26.
    McKeown, K.R. Text generation — Using discourse strategies and focus constraints to generate natural language text, Cambridge Univ. Press — Studies in Natural Language Processing(1985).Google Scholar
  27. 27.
    Moore, J.D. A Reactive Approach to Explanation in Expert and Advice-Giving Systems, Ph.D. dissertation, UCLA, Los Angeles, 1989.Google Scholar
  28. 28.
    Moore, J.D. and Paris, C.L. Planning text for advisory dialogues: Capturing intentional and rhetorical information. Computational Linguistics, 19/4 (1994), 651–694.Google Scholar
  29. 29.
    Musen, M.A. Building and Extending Models. Machine Learning, 4 (1989), 347–375.Google Scholar
  30. 30.
    Musen, M.A. Automated Generation of Model-Based Knowledge Acquisition Tools, Pitman, London (1989).Google Scholar
  31. 31.
    Pollack, M. Plans as complex mental attitudes. In Intentions in Communication, MIT Press, 1990, pp. 77–103.Google Scholar
  32. 32.
    Puppe, F. Diagnostisches Problemlösen mit Expertensystemen, Springer Verlag, Berlin, Heidelberg, Informatik Fachberichte (1987).Google Scholar
  33. 33.
    Schank, R.C. and Abelson, R.P. Scripts, Plans, Goals and Understanding, Lawrence Erlbaum Associates, Publishers, Hillsdale, NewJersey, The Artificial Intelligence Series(1977).Google Scholar
  34. 34.
    Sidner, C.L. Towards a Computational Theory of Definite Anaphora Comprehension in English Discourse, Ph.D. dissertation, MIT, 1979.Google Scholar
  35. 35.
    Voß, A., Karbach, W., Bartsch-Spörl, B., and Bredeweg, B. Reflection and competent problem solving. In 15. Fachtagung für Künstliche Intelligenz, Christaller, T., Springer-Verlag, 1991.Google Scholar
  36. 36.
    Wielinga, B., Schreiber, G., and Breuker, J. KADS: A Modelling Approach to Knowledge Engineering. Tech. Rept. ESPRIT Project, Univ. of Amsterdam, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jens-Uwe Moeller
    • 1
  1. 1.Natural Language Systems Group, Dept. of Computer ScienceUniv. of HamburgHamburgGermany

Personalised recommendations