Abstract
Büchi asynchronous automata are a natural distributed machine model for recognizing ω-regular trace languages. Like their sequential counterparts, these automata need to be non-deterministic in order to capture all ω-regular languages. Thus complementation of these automata is non-trivial. Complementation is an important operation because it is fundamental for treating the logical connective “not” in decision procedures for monadic second-order logics.
In this paper, we present a direct determinization procedure for Büchi asynchronous automata, which generalizes Safra's construction for sequential Büchi automata. As in the sequential case, the blow-up in the state space is essentially that of the underlying subset construction.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
V. Diekert, A. Muscholl: Deterministic asynchronous automata for infinite traces, Acta Inf., 31 (1994) 379–397.
W. Ebinger, A. Muscholl: Logical definability on infinite traces, Proc. ICALP '93, LNCS700 (1993) 335–346.
P. Gastin, A. Petit: Asynchronous cellular automata for infinite traces, Proc. ICALP '92, LNCS623 (1992) 583–594.
J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, A. Sandholm: Mona: Monadic Second-order logic in practice, Report RS-95-21, BRICS, Department of Computer Science, Aarhus University, Aarhus, Denmark (1995).
N. Klarlund: Progress measures for complementation of ω-automata with applications to temporal logic, Proc. 32nd IEEE FOCS, (1991) 358–367.
N. Klarlund, M. Mukund, M. Sohoni: Determinizing asynchronous automata, Proc. ICALP '94, LNCS 820 (1994) 130–141.
N. Klarlund, M. Mukund, M. Sohoni: Determinizing asynchronous automata on infinite traces, Report TCS-95-6, School of Mathematics, SPIC Science Foundation, Madras (1995).
A. Mazurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.), Linear time, branching time and partial order in logics and models for concurrency, LNCS 354, (1989) 285–363.
M. Mukund, M. Sohoni: Keeping track of the latest gossip: Bounded time-stamps suffice, Proc. FST&TCS '93, LNCS761 (1993) 388–399.
A. Muscholl: On the complementation of Büchi asynchronous cellular automata, Proc. ICALP '94, LNCS820 (1994) 142–153.
M.O. Rabin: Decidability of second order theories and automata on infinite trees, Trans. AMS, 141(1969) 1–37.
S. Safra: On the complexity of ω-automata, Proc. 29th IEEE FOCS, (1988) 319–327.
P.S. Thiagarajan: TrPTL: A trace based extension of linear time temporal logic, Proc. 9th IEEE LICS, (1994) 438–447.
W. Thomas: Automata on infinite objects, in J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Volume B, North-Holland, Amsterdam (1990) 133–191.
M. Vardi, P. Wolper: An automata theoretic approach to automatic program verification, Proc. 1st IEEE LICS, (1986) 332–345.
W. Zielonka: Notes on finite asynchronous automata, R.A.I.R.O.—Inf. Théor. et Appl., 21 (1987) 99–135.
W. Zielonka: Safe executions of recognizable trace languages, in Logic at Botik, LNCS363 (1989) 278–289.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klarlund, N., Mukund, M., Sohoni, M. (1995). Determinizing Büchi asynchronous automata. In: Thiagarajan, P.S. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1995. Lecture Notes in Computer Science, vol 1026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60692-0_67
Download citation
DOI: https://doi.org/10.1007/3-540-60692-0_67
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60692-5
Online ISBN: 978-3-540-49263-4
eBook Packages: Springer Book Archive