Skip to main content

Determinizing Büchi asynchronous automata

  • Temporal Logies and Verification Theory
  • Conference paper
  • First Online:
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 1995)

Abstract

Büchi asynchronous automata are a natural distributed machine model for recognizing ω-regular trace languages. Like their sequential counterparts, these automata need to be non-deterministic in order to capture all ω-regular languages. Thus complementation of these automata is non-trivial. Complementation is an important operation because it is fundamental for treating the logical connective “not” in decision procedures for monadic second-order logics.

In this paper, we present a direct determinization procedure for Büchi asynchronous automata, which generalizes Safra's construction for sequential Büchi automata. As in the sequential case, the blow-up in the state space is essentially that of the underlying subset construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. V. Diekert, A. Muscholl: Deterministic asynchronous automata for infinite traces, Acta Inf., 31 (1994) 379–397.

    Google Scholar 

  2. W. Ebinger, A. Muscholl: Logical definability on infinite traces, Proc. ICALP '93, LNCS700 (1993) 335–346.

    Google Scholar 

  3. P. Gastin, A. Petit: Asynchronous cellular automata for infinite traces, Proc. ICALP '92, LNCS623 (1992) 583–594.

    Google Scholar 

  4. J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, A. Sandholm: Mona: Monadic Second-order logic in practice, Report RS-95-21, BRICS, Department of Computer Science, Aarhus University, Aarhus, Denmark (1995).

    Google Scholar 

  5. N. Klarlund: Progress measures for complementation of ω-automata with applications to temporal logic, Proc. 32nd IEEE FOCS, (1991) 358–367.

    Google Scholar 

  6. N. Klarlund, M. Mukund, M. Sohoni: Determinizing asynchronous automata, Proc. ICALP '94, LNCS 820 (1994) 130–141.

    Google Scholar 

  7. N. Klarlund, M. Mukund, M. Sohoni: Determinizing asynchronous automata on infinite traces, Report TCS-95-6, School of Mathematics, SPIC Science Foundation, Madras (1995).

    Google Scholar 

  8. A. Mazurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.), Linear time, branching time and partial order in logics and models for concurrency, LNCS 354, (1989) 285–363.

    Google Scholar 

  9. M. Mukund, M. Sohoni: Keeping track of the latest gossip: Bounded time-stamps suffice, Proc. FST&TCS '93, LNCS761 (1993) 388–399.

    Google Scholar 

  10. A. Muscholl: On the complementation of Büchi asynchronous cellular automata, Proc. ICALP '94, LNCS820 (1994) 142–153.

    Google Scholar 

  11. M.O. Rabin: Decidability of second order theories and automata on infinite trees, Trans. AMS, 141(1969) 1–37.

    Google Scholar 

  12. S. Safra: On the complexity of ω-automata, Proc. 29th IEEE FOCS, (1988) 319–327.

    Google Scholar 

  13. P.S. Thiagarajan: TrPTL: A trace based extension of linear time temporal logic, Proc. 9th IEEE LICS, (1994) 438–447.

    Google Scholar 

  14. W. Thomas: Automata on infinite objects, in J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Volume B, North-Holland, Amsterdam (1990) 133–191.

    Google Scholar 

  15. M. Vardi, P. Wolper: An automata theoretic approach to automatic program verification, Proc. 1st IEEE LICS, (1986) 332–345.

    Google Scholar 

  16. W. Zielonka: Notes on finite asynchronous automata, R.A.I.R.O.—Inf. Théor. et Appl., 21 (1987) 99–135.

    Google Scholar 

  17. W. Zielonka: Safe executions of recognizable trace languages, in Logic at Botik, LNCS363 (1989) 278–289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. S. Thiagarajan

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klarlund, N., Mukund, M., Sohoni, M. (1995). Determinizing Büchi asynchronous automata. In: Thiagarajan, P.S. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1995. Lecture Notes in Computer Science, vol 1026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60692-0_67

Download citation

  • DOI: https://doi.org/10.1007/3-540-60692-0_67

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60692-5

  • Online ISBN: 978-3-540-49263-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics