RSA key generation

Recommended Integrity Primitives
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1007)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BaSh89]
    E. Bach and J. Shallit, “Factoring with cyclotomic polynomials,” Mathematics of Computation, Vol. 52, 1989, pp. 201–219.Google Scholar
  2. [BDL91]
    J. Brandt, I.B. Damgård and P. Landrock, “Speeding up prime number generation,” Advances in Cryptology, Proc. Asiacrypt'91, LNCS 739, H. Imai, R. Rivest, and T. Matsumoto, Eds., Springer-Verlag, 1993, pp. 440–449.Google Scholar
  3. [BrDa92]
    J. Brandt and I.B. Damgård, “On generation of probable primes by incremental search,” Advances in Cryptology, Proc. Crypto'92, LNCS 740, E.F. Brickell, Ed., Springer-Verlag, 1993, pp. 358–369.Google Scholar
  4. [BLS75]
    J. Brillhart, D.H. Lehmer and J.L. Selfridge, “New primality criteria and factorizations of 2m±1,” Mathematics of Computation, Vol. 29, 1975, pp. 620–647.Google Scholar
  5. [DLP93]
    I.B. Damgård, P. Landrock and C. Pomerance, “Average case error estimates for the strong probable prime test,” Mathematics of Computation, Vol. 61, 1993, pp. 177–194.Google Scholar
  6. [Gan90]
    M.J. Ganley, “Note on the generation of p0 for RSA keysets,” Electronic Letters, Vol. 26, No. 6, 1990, p. 369.Google Scholar
  7. [Gor84]
    J. Gordon, “Strong primes are easy to find,” Advances in Cryptology, Proc. Eurocrypt'84, LNCS 209, N. Cot, T. Beth, and I. Ingemarsson, Eds., Springer-Verlag, 1985, pp. 216–223.Google Scholar
  8. [Knu81]
    D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd Edition, Addison-Wesley, Reading Mass., 1981.Google Scholar
  9. [LeMa90]
    A.K. Lenstra and M.S. Manasse, “Factoring with two large primes,” Advances in Cryptology, Proc. Eurocrypt'90, LNCS 473, I.B. Damgård, Ed., Springer-Verlag, 1991, pp. 72–82.Google Scholar
  10. [LLMP90]
    A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse and J.M. Pollard, “The number field sieve,” Proc. 22nd ACM Symp. Theory of Computing, 1990, pp. 464–572.Google Scholar
  11. [Mau89]
    U.M. Maurer, “Fast generation of secure RSA-products with almost maximal diversity,” Advances in Cryptology, Proc. Eurocrypt'89, LNCS 434, J.-J. Quisquater and J. Vandewalle, Eds., Springer-Verlag, 1990, pp. 636–647.Google Scholar
  12. [MiSc91]
    S. Micali and C.P. Schnorr, “Efficient perfect polynomial random number generators,” Journal of Cryptology, Vol. 3, No. 3, 1991, pp. 157–172.Google Scholar
  13. [Pom81]
    C. Pomerance, “On the distribution of pseudoprimes,” Mathematics of Computation, Vol. 37, 1981, pp. 587–593.Google Scholar
  14. [Wil80]
    H.C. Williams, “A Modification of the RSA Public-Key Encryption Procedure,” IEEE Trans. on Information Theory, Vol. IT-26, No. 6, 1980, pp. 726–729.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Personalised recommendations