Logic programming in RPL and RQL

  • Peter Vojtáš
  • Leonard Paulík
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1012)


The aim of this contribution is to show that RPL-Rational Pavelka Logic and RQL-Rational Quantification Logic (Hájek's substantial simplification of Pavelka's propositional and Novák's predicate fuzzy calculi) are suitable logical systems for handling uncertainty in logic programming and expert systems. We define corresponding procedural and declarative semantics, prove the soundness of graded SLD-refutation with fixed → and &t and discuss some further couples of connectives suitable for logic programming and appropriate declarative semantics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [DSM]
    Ding L., Shen Z. L., Mukaidono M.: Fuzzy linear resolution as the inference engine of intelligent systems. in Ras Z. W. (Ed.): Methodologies for Intelligent Systems, Volume 4, Elsevier Science Publ., Amsterdam, 1989, Volume 4, 1–8Google Scholar
  2. [DLP]
    Dubois D., Lang J., Prade H.: Fuzzy sets in approximate reasoning, Part 2: Logical approaches. Fuzzy Sets and Systems 40 (1991) 203–244Google Scholar
  3. [G]
    Gottwald, S.: Mehrwertige Logik. Akademie Verlag, Berlin, 1988Google Scholar
  4. [H1]
    Hájek, P.: Fuzzy logic and arithmetical hierarchy I. Fuzzy Sets and Systems (to appear)Google Scholar
  5. [H2]
    Hájek, P.: Fuzzy logic and arithmetical hierarchy II. Preprint, 1995Google Scholar
  6. [H3]
    Hájek, P.: Grundlagen der Fuzzy Logik. Vorträge, Technische Universität, Wien, 24.-28. 4. 1995Google Scholar
  7. [H4]
    Hájek, P.: Lectures on Fuzzy Logic. Handwritten notes of lectures, Prague, Fall 1994Google Scholar
  8. [L]
    Lloyd, J.W.: Foundation of Logic Programming. Springer Verlag, Berlin, 1987Google Scholar
  9. [M]
    Meritt, D.: Building Expert Systems in Prolog. Springer Verlag, Berlin, 1989Google Scholar
  10. [N]
    Novák, V.: On the syntactico-semantical completeness of first-order fuzzy logic I, II. Kybernetika 26 (1990) 47–26, 134–152Google Scholar
  11. [P]
    Pavelka, J.: On fuzzy logic I, II, III. Zeitschr. f. Math. Logik und Grundl. der Math. 25 (1979) 45–52, 119–134, 447–464Google Scholar
  12. [SB]
    Shortliffe, E. H., Buchanan, B. G.: A model of inexact reasoning in medicine. Math. Biosci. 23 (1975) 351–379Google Scholar
  13. [VPL]
    Vojtáš, P., Paulík, L., Lieskovský, M.: Expert systems and different logic systems. Accepted for the proceeding of AIT'95, Brno, Published by Tech. Univ., Brno, 1995Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Peter Vojtáš
    • 1
  • Leonard Paulík
    • 1
  1. 1.Mathematical Institute of Slovak Academy of SciencesKošiceSlovakia

Personalised recommendations