Advertisement

On the efficiency of superscalar and vector computer for some problems in scientific computing

  • M. Tůma
  • M. Rozložník
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1012)

Abstract

Some details of arithmetic of two representatives of computers (a superscalar workstation and a vector uniprocessor) available in the Czech Republic for scientific computing are described. Consequently, their efficiency and precision on a set of linear algebraic tasks solved by different solvers is compared.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, E., Bai, Z., Bischof, J., Demmel, J., Dongarra, J.J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: Lapack user's guide. SIAM Philadelphia, 1992Google Scholar
  2. 2.
    Berry, M., Cybenko, G., Larson, J.: Scientific benchmarks characterizations. Parallel Computing 17 (1991), 1173–1194.Google Scholar
  3. 3.
    Daydé, M.J., Duff, I.S.: Porting industrial codes and developing sparse linear solvers on parallel computers, Technical Report RAL 94-019, Rutheford Appleton Laboratory, 1994.Google Scholar
  4. 4.
    Demmel, J.W.: Trading off parallelism and numerical stability. In: Linear Algebra for Large-Scale and Real-Time Applications (M.S.Moonen et al. eds.), Kluwer Academic Publishers 1993, 49–68Google Scholar
  5. 5.
    Dongarra, J.J.: Performance of various computers using standard linear equations software. Technical Report CS-89-85, University of Tennessee, Update 1.2.1995Google Scholar
  6. 6.
    Dongarra, J.J., Bunch, J.R., Moler, C.B., Stewart, G.W.: Linpack user's Guide. SIAM, Philadelphia 1979Google Scholar
  7. 7.
    Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl. 11 (1990), 134–172CrossRefGoogle Scholar
  8. 8.
    Ng, E.G., Peyton, B.W.: Block sparse Cholesky algorithms on advanced uniprocessor architectures, SIAM J. Sci. Comput. 14 (1993), 1034–1056.MathSciNetGoogle Scholar
  9. 9.
    Pointer, L: Perfect: Performance evaluation for cost-effective tansformations. Report 2. CSRD Report No. 964, University of Illinois 1990Google Scholar
  10. 10.
    Strakoš, Z., Tůma, M.: Current trends in numerical linear algebra: from theory to practice. In: Proceedings of SOFSEM'94, 1994, 229–247Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Tůma
    • 1
  • M. Rozložník
    • 1
  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPraha 8Czech Republic

Personalised recommendations