Advertisement

Knowledge engineering for CBR systems from a cognitive science perspective

  • G. Strube
  • A. Enzinger
  • D. Janetzko
  • M. Knauff
Poster Sessions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1010)

Abstract

Although CBR has been advertised as a technique to elude knowledge engineering (KE), we argue that knowledge-level modeling in KE is of eminent importance to the success of CBR systems, both for practical and theoretical reasons. Cases are knowledge structures linked to some underlying database (although not necessarily in a one-to-one fashion), and in order to define case structures and their relations to the database, domain knowledge is needed. In this paper, we focus on KE for CBR in the domain of architectural design, first looking at general analyses of work processes and information use, then discussing microanalyses of task structure in order to define case size, finally proceeding to knowledge-level evaluation of the domain knowledge acquired and modeled so far.

Keywords

Knowledge Engineering CBR Systems Knowledge-Level Modeling Architecture Design Task Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chandrasekaran, B. (1986). Generic tasks in knowledge-based reasoning: High-level building blocks for expert system design. IEEE Expert, 1, 23–30.Google Scholar
  2. Clancey, W. J. (1985). Heuristic classification. Artificial Intelligence, 27, 289–350.Google Scholar
  3. Burkhardt, J.-M., & Détienne, F. (1995) An empirical study of software reuse by experts in object-oriented design. Proceedings of Interact '95. Lillehammer (Norway), 27–29 June.Google Scholar
  4. Drury, C. G., Paramore, B., van Cott, H. P., Grey, S. M., & Corlett, E. N. (1987) Task analysis. In G. Salvendy (Ed.), Handbook of Human Factors (370–401). New York: Wiley.Google Scholar
  5. Enzinger, A. (forthcoming). Experts' working input. Phil. Diss., University of Freiburg.Google Scholar
  6. Janetzko, D., Börner, K., Jäschke, O. & Strube, G. (1994). Task-oriented Knowledge Acquisition and Reasoning for Design Support Systems. Proceedings of the First European Conference on Cognitive Science in Industry, 28th–30th September, 1994, Luxembourg, 153–184.Google Scholar
  7. Kolodner, J. (1993). Case-based reasoning. San Mateo, CA: Morgan Kaufmann.Google Scholar
  8. Newell, A. (1982). The knowledge level. Artificial Intelligence, 18, 87–12.Google Scholar
  9. Riesbeck, C. K., & Schank, R. C. (1989). Inside case-based reasoning. Hillsdale, NJ: Erlbaum.Google Scholar
  10. Schreiber, G., Wielinga, B., & Breuker, J. (1993). KADS. A principled approach to knowledge-based systems development. London: Academic Press.Google Scholar
  11. Steels, L. (1990, Summer). The components of expertise. AI Magazine. (also VUB AI Lab Memo 88-16).Google Scholar
  12. Strube, G., Janetzko, D. & Knauff, M. (in press). Cooperative construction of expert knowledge. In P. B. Baltes & U. M. Staudinger (Eds.), Interactive minds. Cambridge: Cambridge University Press.Google Scholar
  13. Van de Velde, W. (1993). Issues in knowledge-level modelling. In J. M. David, J. P. Krivine, & R. Simmons (Eds.), Second Generation Expert Systems (pp. 211–231). Berlin: Springer.Google Scholar
  14. VanLehn, K. (1989). Problem solving and cognitive skill acquisition. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 527–579). Cambridge, MA: MIT Press (Bradford)Google Scholar
  15. Visser, W. (1987). Strategies in Programming programmable controllers: field study on a professional programmer. In G. Olson, S. Sheppard, & E. Soloway (Eds.), Empirical Studies of Programmers. Second Workshop. Norwood, NJ: Ablex.Google Scholar
  16. Wielinga, B. J., & Breuker, J. A. (1986). Training of knowledge engineers using a structured methodology. In T. Bernold (Ed.), Expert Systems and Knowledge Engineering (pp. 133–139). Amsterdam: Elsevier (North-Holland).Google Scholar
  17. Wielinga, B. J., Schreiber, A. T., Breuker, J. A. (1992). KADS: A modelling approach to knowledge engineering. Knowledge Acquisition, 4 (Special Issue “The KADS approach to knowledge engineering”).Google Scholar
  18. Wielinga, B., Van de Velde, W., Schreiber, G., & Akkermans, H. (1993). Towards a unification of knowledge modelling approaches. In J. M. David, J. P. Krivine, & R. Simmons (Eds.), Second Generation Expert Systems (pp. 299–335). Berlin: Springer.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • G. Strube
    • 1
  • A. Enzinger
    • 1
  • D. Janetzko
    • 1
  • M. Knauff
    • 1
  1. 1.Center for Cognitive ScienceUniversity of Freiburg IIGFreiburgGermany

Personalised recommendations