Feedback with carry shift registers over finite fields

Extended abstract
  • Andrew Klapper
Session 3: Stream Ciphers-Cryptanalysis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1008)


  1. 1.
    A. Chan and R. Games, On the linear span of binary sequences from finite geometries, q odd, IEEE Trans. Info. Theory, vol. IT-36 (1990) pp. 548–552.Google Scholar
  2. 2.
    M. Goresky and A. Klapper, Feedback registers based on ramified extensions of the 2-adic numbers — extended abstract, Proceedings of Eurocrypt '94, Perugia, Italy, May 1994.Google Scholar
  3. 3.
    E. L. Key, An Analysis of the structure and complexity of nonlinear binary sequence generators, IEEE Trans. Info. Theory, vol. IT-22 no. 6 (1976) pp. 732–736.Google Scholar
  4. 4.
    A. Klapper, The Vulnerability of Geometric Sequences Based on Fields of Odd Characteristic, Journal of Cryptology, 7 (1994) pp. 33–51.Google Scholar
  5. 5.
    A. Klapper and M. Goresky, Feedback Shift Registers, Combiners with Memory, and Arithmetic Codes, University of Kentucky, Deptartment of Computer Science Technical Report No. 239-93. Presented at 1993 Cambridge Workshop on Algorithms.Google Scholar
  6. 6.
    D. Mandelbaum, An approach to an arithmetic analog of Berlekamp's algorithm. IEEE Trans. Info. Theory, vol. IT-30 (1984) pp. 758–762.Google Scholar
  7. 7.
    R. Rueppel, Analysis and Design of Stream Ciphers. Springer Verlag, New York, 1986.Google Scholar
  8. 8.
    B. M. M. de Weger, Approximation lattices of p-adic numbers. J. Num. Th. vol. 24 (1986) pp. 70–88.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Andrew Klapper
    • 1
  1. 1.Dept. of Computer ScienceUniversity of KentuckyLexingtonUSA

Personalised recommendations