Advertisement

Belief revision in non-monotonic reasoning

  • José Alferes
  • Luís Moniz Pereira
  • Teodor C. Przymusinski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 990)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ADP94]
    J. J. Alferes, C. V. Damásio, and L. M. Pereira. SLX — a top-down derivation procedure for programs with explicit negation. In M. Bruynooghe, editor, Int. Logic Programming Symposium. MIT Press, 1994.Google Scholar
  2. [ADP95]
    J. J. Alferes, C. V. Damásio, and L. M. Pereira. A logic programming system for non-monotonic reasoning. Journal of Automated Reasoning, Special Issue on Implementation of NonMonotonic Reasoning(14):93–147, 1995.Google Scholar
  3. [Alf93]
    J. J. Alferes. Semantics of Logic Programs with Explicit Negation. PhD thesis, Universidade Nova de Lisboa, 1993.Google Scholar
  4. [AP92]
    J. J. Alferes and L. M. Pereira. On logic program semantics with two kinds of negation. In K. Apt, editor, International Joint Conference and Symposium on Logic Programming, pages 574–588. MIT Press, 1992.Google Scholar
  5. [AP94]
    J. J. Alferes and L. M. Pereira. Belief, provability and logic programs. In C. MacNish et al., editors, Logics in AI, pages 106–121. Springer-Verlag LNAI 838, 1994. Extended version in Journal of Applied Nonclassical Logics, 5(1):31–50, 1995.Google Scholar
  6. [APP95]
    J. J. Alferes, L. M. Pereira, and T. Przymusinski. Strong and explicit negation in non-monotonic reasoning and logic programming. (in preparation), 1995.Google Scholar
  7. [Cla78]
    K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages 293–322. Plenum Press, 1978.Google Scholar
  8. [GL88]
    M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth Logic Programming Symposium, pages 1070–1080, Cambridge, Mass., 1988. Association for Logic Programming, MIT Press.Google Scholar
  9. [GL90]
    M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proceedings of the Seventh International Logic Programming Conference, Jerusalem, Israel, pages 579–597, Cambridge, Mass., 1990. Association for Logic Programming, MIT Press.Google Scholar
  10. [GPP89]
    M. Gelfond, H. Przymusinska, and T. Przymusinski. On the relationship between circumscription and negation as failure. Journal of Artificial Intelligence, 38:75–94, 1989.CrossRefGoogle Scholar
  11. [Lif92]
    V. Lifschitz. Minimal belief and negation as failure. Research report, University of Texas at Austin, 1992.Google Scholar
  12. [McC80]
    J. McCarthy. Circumscription — a form of non-monotonic reasoning. Journal of Artificial Intelligence, 13:27–39, 1980.CrossRefGoogle Scholar
  13. [Min82]
    J. Minker. On indefinite data bases and the closed world assumption. In Proc. 6-th Conference on Automated Deduction, pages 292–308, New York, 1982. Springer Verlag.Google Scholar
  14. [Moo85]
    R.C. Moore. Semantic considerations on non-monotonic logic. Journal of Artificial Intelligence, 25:75–94, 1985.CrossRefGoogle Scholar
  15. [MT94]
    W. Marek and M. Truszczynski. Non-Monotonic Logic. Springer Verlag, 1994.Google Scholar
  16. [PA92]
    L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with explicit negation. In B. Neumann, editor, European Conference on Artificial Intelligence, pages 102–106. John Wiley & Sons, 1992.Google Scholar
  17. [PA94]
    L. M. Pereira and J. J. Alferes. Contradiction: when avoidance equal removal. Part II. In R. Dyckhoff, editor, Extensions of Logic Programming, number 798 in LNAI, pages 268–281. Springer-Verlag, 1994.Google Scholar
  18. [PAA91]
    L. M. Pereira, J. J. Alferes, and J. N. Aparício. Contradiction Removal within Well Founded Semantics. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, Logic Programming and NonMonotonic Reasoning, pages 105–119. MIT Press, 1991.Google Scholar
  19. [PAA93]
    L. M. Pereira, J. N. Aparício, and J. J. Alferes. Non-monotonic reasoning with logic programming. Journal of Logic Programming. Special issue on Nonmonotonic reasoning, 17(2, 3 & 4):227–263, 1993.Google Scholar
  20. [PDA93]
    L. M. Pereira, C. Damásio, and J. J. Alferes. Diagnosis and debugging as contradiction removal. In L. M. Pereira and A. Nerode, editors, 2nd International Workshop on Logic Programming and NonMonotonic Reasoning, pages 316–330. MIT Press, 1993.Google Scholar
  21. [Prz90]
    T. C. Przymusinski. The well-founded semantics coincides with the threevalued stable semantics. Fundamenta Informaticae, 13(4):445–464, 1990.Google Scholar
  22. [Prz91a]
    T. C. Przymusinski. Autoepistemic logics of closed beliefs and logic programming. In A. Nerode, W. Marek, and V.S. Subrahmanian, editors, Proceedings of the First International Workshop on Logic Programming and Non-monotonic Reasoning, Washington, D.C., July 1991, pages 3–20, Cambridge, Mass., 1991. MIT Press.Google Scholar
  23. [Prz91b]
    T. C. Przymusinski. Stable semantics for disjunctive programs. New Generation Computing Journal, 9:401–424, 1991. (Extended abstract appeared in: Extended stable semantics for normal and disjunctive logic programs. Proceedings of the 7-th International Logic Programming Conference, Jerusalem, pages 459–477, 1990. MIT Press.).Google Scholar
  24. [Prz94a]
    T. C. Przymusinski. Autoepistemic logic of knowledge and beliefs. (in preparation), University of California at Riverside, 1994.Google Scholar
  25. [Prz94b]
    T. C. Przymusinski. A knowledge representation framework based on autoepistemic logic of minimal beliefs. In Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI-94, Seattle, Washington, August 1994, page (in print), Los Altos, CA, 1994. American Association for Artificial Intelligence, Morgan Kaufmann.Google Scholar
  26. [Prz94c]
    T. C. Przymusinski. Static semantics for normal and disjunctive logic programs. Annals of Mathematics and Artificial Intelligence, 1994. (in print).Google Scholar
  27. [Rei78]
    R. Reiter. On closed-world data bases. In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages 55–76. Plenum Press, New York, 1978.Google Scholar
  28. [Rei87]
    R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–96, 1987.CrossRefGoogle Scholar
  29. [RLM89]
    A. Rajasekar, J. Lobo, and J. Minker. Weak generalized closed world assumption. Journal of Automated Reasoning, 5:293–307, 1989.CrossRefGoogle Scholar
  30. [RT88]
    K. Ross and R. Topor. Inferring negative information from disjunctive databases. Journal of Automated Reasoning, 4:397–424, 1988.CrossRefGoogle Scholar
  31. [VGRS90]
    A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic programs. Journal of the ACM, 1990. Preliminary abstract appeared in Seventh ACM Symposium on Principles of Database Systems, March 1988, pp. 221–230.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • José Alferes
    • 1
  • Luís Moniz Pereira
    • 2
  • Teodor C. Przymusinski
    • 3
  1. 1.DM, U. Évora and CRIA UninovaMonte da CaparicaPortugal
  2. 2.DCS, U.Nova de Lisboa and CRIA UninovaMonte da CaparicaPortugal
  3. 3.Department of Computer ScienceUniversity of CaliforniaRiversideUSA

Personalised recommendations