Constraint categorial grammars

  • Luís Damas
  • Nelma Moreira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 990)


Although unification can be used to implement a weak form of β-reduction, several linguistic phenomena are better handled by using some form of λ-calculus. In this paper we present a higher order feature description calculus based on a typed λ-calculus. We show how the techniques used in \(\mathcal{C}\mathcal{L}\mathcal{G}\)for resolving complex feature constraints can be efficiently extended. \(\mathcal{C}\mathcal{C}\mathcal{L}\mathcal{G}\)is a simple formalism, based on categorial grammars, designed to test the practical feasibility of such a calculus.


constraint satisfaction computational semantics high-order programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BvN94]
    Gosse Bouma and Gertjan van Noord. Constraint-based categorial grammars. In Proceedings of the 15th International Conference on Computational Linguistics and the 22nd Annual Meeting of the Association for Computational Linguistics (COLING), 1994.Google Scholar
  2. [DMV94]
    Luís Damas, Nelma Moreira, and Giovanni B. Varile. The formal and computational theory of complex constraint solution. In C. Rupp, M. A. Rosner, and R. L. Johnson, editors, Constraints, Language, and Computation, Computation In Cognitive Science, pages 149–166. Academic Press, London, 1994.Google Scholar
  3. [DSP91]
    Mary Dalrymple, Stuart M. Shieber, and Fernando C. N. Pereira. Ellipsis and higher-order unification. Linguistics and Philosophy, 14:399–452, 1991.CrossRefGoogle Scholar
  4. [DV92]
    Luís Damas and Giovanni B. Varile. On the satisfiability of complex constraints. In Proceedings of the 14th International Conference on Computational Linguistics (COLING), Nantes, France, 1992.Google Scholar
  5. [Hep92]
    Mark Hepple. Chart parsing lambek grammars. In Proceedings of the 14th International Conference on Computational Linguistics (COLING), pages 134–140, Nantes,France, 1992.Google Scholar
  6. [Kon94]
    Esther Konig. A hypothetical reasoning algorithm for linguistic analysis. Journal of Logic and Computation, 1994. to appear.Google Scholar
  7. [Lam58]
    Joachim Lambek. The mathematics of sentence structure. American Mathematical Monthly, 65, 1958. Reprinted in: Buszkowski, W., W. Marciszewski, and J. van Benthem (eds): Categorial Grammar. Amsterdam, 1988.Google Scholar
  8. [Mah88]
    Michael J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite trees. Technical report, IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, U.S.A., 1988.Google Scholar
  9. [Moo88]
    Michael Moortgat. Categorial Investigations: Logical and Linguistic Aspects of Lambek Calculus. Foris, Dordrecht, 1988.Google Scholar
  10. [Mor94]
    Glyn Morrill. Type Logical Grammar:Categorial Logic of Signs. Kluwer Academic Publishers, Dordrecht, 1994.Google Scholar
  11. [Mor95]
    Nelma Moreira. Formalismos e técnicas de implementação de gramáticas lógicas com restrições. PhD thesis, Faculdade de Ciências da Universidade do Porto, 1995. to appear.Google Scholar
  12. [NM88]
    Gopalan Nadathur and Dale Miller. An overview of λprolog. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth International Conference and Symposium, volume 1, pages 810–827, Seattle, WA, 1988. MIT Press.Google Scholar
  13. [Per90]
    Fernando C.N. Pereira. Categorial semantics and scoping. Computational Linguistics, 16(1). 1990.Google Scholar
  14. [PS87]
    Fernando C.N. Pereira and Stuart M. Shieber. Prolog and Natural Language Analysis. Center for the Study of Language and Information Stanford, 1987.Google Scholar
  15. [Smo89]
    Gert Smolka. Feature constraint logics for unification grammars. Technical report, IBM Wissenschafliches Zentrum, Institut für Wissensbasierte Systeme, 1989. IWBS Report 93.Google Scholar
  16. [ST92]
    Gert Smolka and Ralf Treinen. Records for logic programming. In Krzysztof Apt, editor, ICLP92. MIT, 1992.Google Scholar
  17. [ZKC87]
    Henk Zeevat, Ewan Klein, and Jo Calder. Unification categorial grammar. In Nicholas Haddock, Ewan Klein, and Glyn Morrill, editors, Categorial Grammar, Unification Grammar and Parsing. Centre for Cognitive Science, University of Edinburgh, 1987. Volume 1 of Working Papers in Cognitive Science.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Luís Damas
    • 1
  • Nelma Moreira
    • 1
  1. 1.LIACC, Universidade do PortoPortoPortugal

Personalised recommendations