Qualitative reasoning under uncertainty

  • Pacholczyk Daniel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 990)


In this paper we propose a Symbolic Probability Theory for the Management of Uncertainty encoded into a Qualitative way. A semantic model of Uncertainty Representation is made with the aid of nonlogical tools built on the substrate of a M-valued Predicate Logic. In order to exploit Uncertain Knowledge, we have constructed deductive processes founded upon Logical or Conditional inferences. We have obtained Generalizations of either classical Deduction Rules, or classical Conditional Probabilities.


Artificial Intelligence Conditional Probabilities Independence Knowledge Representation Many-valued predicate Logic Qualitative Reasoning Symbolic Uncertainty Representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ADGP92]
    H. Akdag, M. De Glas & D. Pacholczyk-A Qualitative Theory of Uncertainty. Fundamenta Informaticæ. Vol. 17. N∘. 4. p. 333–362. 1992.Google Scholar
  2. [Alel88]
    R. Aleliunas-A new normative theory of probabilistic logic. in Proc. of the Canadian A.I. Conf. San Mateo, California. p. 67–74. 1988.Google Scholar
  3. [Alel90]
    R. Aleliunas-A summary of New Normative Theory of Probabilistic Logic. in Uncertainty in A.I. 4. Elsevier Science Pubs. North Holland. p. 199–206. 1990.Google Scholar
  4. [Bell90]
    J. Bell-Nonmonotonic reasoning, nonmonotonic logics and reasoning about change. in A. I. Review 4. p. 79–108. 1990.CrossRefGoogle Scholar
  5. [Bobr84]
    D. G. Bobrow-Qualitative Reasoning About Physical Systems. Amsterdam. Elsevier Science Pubs. 1984.Google Scholar
  6. [Bout94]
    C. Boutilier-Modal Logics for Qualitative Possibility Theory. in Int. Journal of Approximate Reasoning, 10. p 173–201.1994.CrossRefGoogle Scholar
  7. [CGSc91]
    G. Coletti, A. Gilio & R. Scozzafava-Assessment of qualitative judgements for conditional events. in Expert Systems. Lecture note in Computer Sc. Nu. 548. 1991.Google Scholar
  8. [CoGr83]
    P. R. Cohen & M.R. Grinsberg-A framework for Heuristics Reasoning about Uncertainty. in Prooc. AAAI. p 355–357. 1983.Google Scholar
  9. [Cohe85]
    P. R. Cohen-Heuristic Reasoning about Uncertainty: An A. I. approach. Pitman Pubs. Inc. 1985.Google Scholar
  10. [DaGi92]
    A. Darwiche & M. Ginsberg-A symbolic generalization of probability theory. in proc. of the Am. Ass. for A. I. San Jose. p. 622–627. 1992.Google Scholar
  11. [Darw92]
    A. Darwiche-A symbolic generalization of probability theory. Ph.D. D. Computer Science Dpt., Stanford University. Palo Alto, California. 1992.Google Scholar
  12. [Davi90]
    E. Davis-Representation of Commonsense Knowledge. Morgan Kaufmann. 1990.Google Scholar
  13. [DrHe93]
    M.J. Druzdzel & M. Henrion-Efficient Reasoning in Qualitative Probabilistic Networks Proc. of AAAI. p 548–553. 1993.Google Scholar
  14. [FPKE93]
    J. Fox, S. Parsons, P Krause & M. Elvang-Goransson-A General Framework for Uncertainty Reasoning. in Proc. of IMACS Inter. Worshop. Barcelona. p 461–470. 1993.Google Scholar
  15. [Gold92]
    M. Goldszmidt-Qualitative probabilities, a normative framework for commonsense reasoning. Ph.D. D. University of Los Angeles. 1992.Google Scholar
  16. [GoPe92]
    M. Goldszmidt & J. Pearl-Reasoning with qualitative probabilities can be tractable. in proc. of the 8th Conference on A. I. Stanford. p. 112–120. 1992.Google Scholar
  17. [HaFa92]
    J. Y. Halpern & R. Fagin-Two views of belief: belief as generalized probability and belief as evidence. in A.I. 54. p. 275–317. 1992.Google Scholar
  18. [Haec92]
    W. van der Haeck-On the Semantics of Graded Modalities. Journal of Applied Non-classical Logics, 2 (1). p 81–123. 1992.Google Scholar
  19. [HeDr91]
    M. Henrion & M. J. Druzdzel-Qualitative propagation and scenario-based schemes for explaining probabilistic reasoning. in Uncertainty in A. I. 6. p. 17–32. 1991.Google Scholar
  20. [Pacd92(a)]
    D. Pacholczyk-Contribution au Traitement Logico-symbolique de la Connaissance. Thèse d'Etat. Université P. et M. Curie. PARIS VI. 1992.Google Scholar
  21. [Pacd92(b)]
    D. Pacholczyk-A New Approach to Vagueness and Uncertainty. in C.C.-A.I. Vol. 9. Nu. 4. p. 395–435. 1992.Google Scholar
  22. [Pacd93]
    D. Pacholczyk-Symbolic Reasoning under Vagueness and Uncertainty. LAFORIA, Rapport interne n∘ 93/19.Google Scholar
  23. [Pacd94]
    D. Pacholczyk-A Symbolic Probability Theory for the Management of Uncertainty. in CC-AI, Vol 11, Nu 4, p 3–70. 1994.Google Scholar
  24. [PdjH95]
    D. Pacholczyk, J-M. Pacholczyk & G. Hunault-Explicit Management of the Natural Language Uncertainty via a Logico-symbolic Probability Theory. To appear in Proc. WOCFAI'95. Paris. July 1995.Google Scholar
  25. [PaDo93]
    S. Parsons & M. Dohnal-A semiqualitative approach to reasoning in probabilistic networks. in Applied A. I. Vol. 7, Nu. 3. p. 223–236. 1993.Google Scholar
  26. [PaMa93]
    S. Parsons & E.H. Mandani-Qualitative Dempster-Shafer Theory. in Proc. of IMACS Worshop. Barcelona.p 471–480.1993.Google Scholar
  27. [Pars93]
    S. Parsons-On Reasoning in networks with qualitative Uncertainty in Proc. 9th Conf. on Uncertainty in A. I. Washington. DC. 1993.Google Scholar
  28. [Pear88(a)]
    J. Pearl-Evidential Reasoning Under Uncertainty. in Exploring A. I. (H. E. Shorbe Ed.). M. Kaufman, San Mateo. p. 381–418. 1988.Google Scholar
  29. [Pear88(b)]
    J. Pearl-Probabilistic reasoning in intelligent systems. Morgan Kaufmann Pubs. San Mateo, California. 1988.Google Scholar
  30. [Pool91]
    D. Poole-Representing diagnostic knowledge for probabilistic Horn abduction. in Proc.s of IJCAI'91. p. 1129–1135. 1991.Google Scholar
  31. [Pool93]
    D. Poole-Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities. in Proc. of IJCAI'93. p 606–612. 1993.Google Scholar
  32. [Stru88]
    P. Struss-Mathematical aspects of qualitative reasoning. A.I. Eng. 3. p 156–169. 1988.Google Scholar
  33. [Well90]
    M. Wellman-Formulation of tradeoffs in Planning under Uncertainty. Pittman. London. 1990.Google Scholar
  34. [Will86]
    B. C. Williams-Doing Time: Putting qualitative reasoning on former ground in IAAAI-86, Philadelphie. p. 105–112. 1986.Google Scholar
  35. [XBPo90]
    Y. Xiang, M.P. Beddoes & D. Poole-Can Uncertainty Management be realized in a finite totally ordered Probability Algebra. in Uncertainty in A. I 5. Elsevier Science Pubs. p. 41–57. 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Pacholczyk Daniel
    • 1
  1. 1.LERIA U.F.R. Sciences d'AngersAngers Cedex 01

Personalised recommendations