Advertisement

Naive Geography

  • Max J. Egenhofer
  • David M. Mark
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 988)

Abstract

This paper defines the notion and concepts of Naive Geography, the field of study that is concerned with formal models of the common-sense geographic world. Naive Geography is the body of knowledge that people have about the surrounding geographic world. Naive Geography is envisioned to comprise a set of theories that provide the basis for designing future Geographic Information Systems that follow human intuition and are, therefore, easily accessible to a large range of users.

Keywords

Geographic Space Geographic Information System Fuzzy Reasoning North Atlantic Treaty Organization Qualitative Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abler, R., J. Adams, and P. Gould (1971) Spatial Organization—The Geographer's View of the World. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  2. Bunge, W. (1962) Theoretical Geography. Lund: C.W.K. Gleerup.Google Scholar
  3. Buttenfield, B. (1989) Multiple Representations: Initiative 3 Specialist Meeting Report. National Center for Geographic Information and Analysis, Santa Barbara, CA, Technical Report 89-3.Google Scholar
  4. Buyong, T., W. Kuhn, and A. Frank (1991) A Conceptual Model of Measurement-Based Multipurpose Cadastral Systems, URISA Journal 3(2):35–49.Google Scholar
  5. Couclelis, H. and N. Gale (1986) Space and Spaces. Geografiska Annaler 68(B):1–12.Google Scholar
  6. De Kleer, J. (1992) Physics, Qualitative, in: S. Shapiro (ed.), Encyclopedia of Artificial Intelligence. Second Edition. New York: John Wiley & Sons, Inc., 2:1149–1159.Google Scholar
  7. De Kleer, J. and J. Brown (1984) A Qualitative Physics Based on Confluences. Artificial Intelligence 24:7–83.Google Scholar
  8. Downs, R. and D. Stea (1977) Maps in Minds: Reflections on Cognitive Mapping. New York: Harper and Row.Google Scholar
  9. Egenhofer, M. and R. Franzosa (1991) Point-Set Spatial Topological Relations. International Journal of Geographical Information Systems 5(2): 161–174.Google Scholar
  10. Egenhofer, M. and R. Golledge (1994) Time in Geographic Space: Report on the Specialist Meeting of Research Initiative 10. National Center for Geographic Information and Analysis, Santa Barbara, CA, Technical Report 94-9.Google Scholar
  11. Egenhofer, M. and J. Herring (1991) High-Level Spatial Data Structures for GIS. in: D. Maguire, M. Goodchild, and D. Rhind (eds.), Geographical Information Systems, Vol. 1: Principles. London: Longman, pp. 147–163.Google Scholar
  12. Forbus, K., P. Nielsen, and B. Faltings (1991) Qualitative Spatial Reasoning: The Clock Project. Artificial Intelligence 51:417–471.Google Scholar
  13. Frank, A. (1987) Towards a Spatial Theory, in: International Geographic Information Systems (IGIS) Symposium: The Research Agenda. Arlington, VA, pp. 215–227.Google Scholar
  14. Frank, A. (1992) Personal communication.Google Scholar
  15. Frank, A. and I. Campari, Eds. (1993) Spatial Information Theory, European Conference, COSIT '93. Lecture Notes in Computer Science Vol. 716. New York: Springer-Verlag.Google Scholar
  16. Frank, A. and D. Mark (1991) Language Issues for GIS. in: D. Maguire, M. Goodchild, and D. Rhind (eds.), Geographical Information Systems, Vol. 1: Principles. London: Longman, pp. 147–163.Google Scholar
  17. Gelsey, A. and D. McDermott (1990) Spatial Reasoning About Mechanisms. in: S. Chen (Ed.), Advances in Spatial Reasoning. 1:1–33, Norwood, NJ: Ablex Publishing Corporation.Google Scholar
  18. Golledge, R. (1978) Learning about Urban Environments. in: T. Carlstein, D. Parkes, and N. Thrift (Eds.), Timing Space and Spacing Time. London: Edward Arnold.Google Scholar
  19. Golledge, R., R. Briggs, and D. Demko (1969) The Configuration of Distances in Intra-Urban Space. Proceedings of the Association of American Geographers, pp. 60–65.Google Scholar
  20. Goodchild, M. (1992) Geographical Information Science. International Journal of Geographical Information Systems 6(1):31–45.Google Scholar
  21. Goodchild, M. (1994) Personal communication.Google Scholar
  22. Hardt, S. (1992). Physics, Naive. in: S. Shapiro (Ed.), Encyclopedia of Artificial Intelligence. Second Edition. New York: John Wiley & Sons, Inc., 2:1147–1149.Google Scholar
  23. Hayes, P. (1978) The Naive Physics Manifesto. in: D. Michie (Ed.), Expert Systems in the Microelectronic Age. Edinburgh, Scotland: Edinburgh University Press, pp. 242–270.Google Scholar
  24. Hayes, P. (1985a) The Second Naive Physics Manifesto. in: J. Hobbs and R. Moore (Eds.), Formal Theories of the Commonsense World. Norwood, NJ: Ablex, pp. 1–36.Google Scholar
  25. Hayes, P. (1985b) Naive Physics I: Ontology of Liquids. in: J. Hobbs and R. Moore (Eds.), Formal Theories of the Commonsense World. Norwood, NJ: Ablex, pp. 71–108.Google Scholar
  26. Hernández, D. (1994) Qualitative Representation of Spatial Knowledge, Lecture Notes in Computer Science, Vol. 804, New York: Springer-Verlag.Google Scholar
  27. Herskovits, A. (1986) Language and Spatial Cognition—An Interdisciplinary Study of the Prepositions in English. Cambridge, MA: Cambridge University Press.Google Scholar
  28. Hirtle, S. and J. Jonides (1985) Evidence of Hierarchies in Cognitive Maps. Memory and Cognition 13(3):208–217.Google Scholar
  29. Jones, S. (1963) Weights and Measures: An Informal Guide. Washington, D.C.: Public Affairs PressGoogle Scholar
  30. Kennelly, A. (1928) Vestiges of Pre-Metric Weights and Measures Persisting in Metric-System Europe, 1926–1927. New York: The Macmillan Company.Google Scholar
  31. Kosslyn, S., T. Ball, and B. Reiser (1978) Visual Images Preserve Metric Spatial Information: Evidence from Studies of Image Scanning. Journal of Experimental Psychology: Human Perception and Performance 4:47–60Google Scholar
  32. Kuipers, B. (1978) Modeling Spatial Knowledge. Cognitive Science 2:129–153.Google Scholar
  33. Kuipers, B. and T. Levitt (1988) Navigation and Mapping in Large-Scale Space. AI Magazine 9(2):25–46.Google Scholar
  34. Kula, W. (1983) Les Mesures et Les Hommes. Paris: Maison des Sciences de L'Homme. [Translated from Polish by Joanna Ritt; Polish edition 1970.]Google Scholar
  35. Lynch, K. (1960) The Image of a City. Cambridge, MA: MIT Press.Google Scholar
  36. Mark, D. (1992a) Spatial Metaphors for Human-Computer Interaction. Fifth International Symposium on Spatial Data Handling. Charleston, SC, 1:104–112.Google Scholar
  37. Mark, D. (1992b) Counter-Intuitive Geographic “Facts”: Clues for Spatial Reasoning at Geographic Scales. in: A. Frank, I. Campari, and U. Formentini (Eds.), Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. Lecture Notes in Computer Science No. 639, Berlin: Springer-Verlag, pp. 305–317.Google Scholar
  38. Mark, D., D. Comas, M. Egenhofer, S. Freundschuh, M. Gould, and J. Nunes (1995) Evaluating and Refining Computational Models of Spatial Relations Through Cross-Linguistic Human-Subjects Testing, COSIT '95, Semmering, Austria, Lecture Notes in Computer Science, Springer-Verlag.Google Scholar
  39. Mark, D. and S. Freundschuh (1995) Spatial Concepts and Cognitive Models for Geographic Information Use. in: T. Nyerges, D. Mark, R. Laurini, and M. Egenhofer (Eds.), Cognitive Aspects of Human-Computer Interaction for Geographic Information Systems. Dordrecht: Kluwer Academic Publishers.Google Scholar
  40. Marr, D. (1982) Vision, San Francisco, CA: W.H. Freeman.Google Scholar
  41. McClosky, M. (1983) Intuitive Physics. Scientific American 248(4): 122–130.Google Scholar
  42. McNamara, T., J. Hardy, and S. Hirtle (1989) Subjective Hierarchies in Spatial Memory, Journal of Environmental Psychology: Learning, Memory, and Cognition 15(2):211–227.Google Scholar
  43. Montello, D. (1993) Scale and Multiple Psychologies of Space. in: A. Frank and I. Campari (Eds.), Spatial Information Theory: A Theoretical Basis for GIS. Lecture Notes in Computer Sciences No. 716, Berlin: Springer-Verlag, pp. 312–321.Google Scholar
  44. Morrissey, J. (1990) Imprecise Information and Uncertainty in Information Systems. ACM Transactions of Information Systems 8(2): 159–180.Google Scholar
  45. Papadias, D. (1995) Personal communication.Google Scholar
  46. Papadias, D. and T. Sellis (1994) Qualitative Representation of Spatial Knowledge in Two-Dimensional Space. VLDB Journal 3(4):479–516.Google Scholar
  47. Pederson, E. (1993) Geographic and Manipulable Space in Two Tamil Linguistic Systems. in: A. Frank and I. Campari (Eds.), Spatial Information Theory: A Theoretical Basis for GIS. Lecture Notes in Computer Sciences No. 716, Berlin: Springer-Verlag.Google Scholar
  48. Piaget, J. and B. Inhelder (1967) The Child's Conception of Space. New York: Norton.Google Scholar
  49. Retz-Schmidt, G. (1988) Various Views on Spatial Prepositions. AI Magazine 9:95–105.Google Scholar
  50. Riesbeck, C. (1980) You Can't Miss It: Judging the Clarity of Directions. Cognitive Science 4:285–303.Google Scholar
  51. Sharma, J., D. Flewelling, and M. Egenhofer (1994) A Qualitative Spatial Reasoner. in: T. Waugh and R. Healey (Eds.) Sixth International Symposium on Spatial Data Handling. Edinburgh, Scotland, pp. 665–681.Google Scholar
  52. Smith, B. (1994) The Formal Ontology of Space: An Essay in Mereotopology. in: L. Hahn (Ed.), The Philosophy of Roderick Chisholm. Chicago and LaSalle: Open Court (in press).Google Scholar
  53. Stevens, A. and P. Coupe (1978) Distortions in Judged Spatial Relations. Cognitive Psychology 10:422–437.Google Scholar
  54. Talmy, L. (1983) How Language Structures Space. in: H. Pick and L. Acredolo (Eds.), Spatial Orientation: Theory, Research, and Application. New York: Plenum Press, pp. 225–282.Google Scholar
  55. Tversky, B. (1981) Distortions in Memory for Maps. Cognitive Psychology 13:407–433.Google Scholar
  56. Waddington, M. (1993) Naive Geography. Queen's Quarterly 100(1):149.Google Scholar
  57. Zadeh, L. (1974) Fuzzy Logic and Its Application to Approximate Reasoning. in: Information Processing. North-Holland Publishing Company.Google Scholar
  58. Zubin, D. (1989) Untitled, in: D. Mark, A. Frank, M. Egenhofer, S. Freundschuh, M. McGranaghan, and R. M. White (Eds.), Languages of Spatial Relations: Initiative Two Specialist Meeting Report. Technical Paper 89-2, National Center for Geographic Information and Analysis, Santa Barbara, CA, pp. 13–17.Google Scholar
  59. Zupko, R. (1968) A Dictionary of English Weights and Measures. Madison, WI: The University of Wisconsin Press.Google Scholar
  60. Zupko, R. (1977) British Weights and Measures: A History from Antiquity to the Seventeenth Century. Madison, WI: The University of Wisconsin Press.Google Scholar
  61. Zupko, R. (1978) French Weights and Measures Before the Revolution: A Dictionary of Provincial and Local Units. Bloomington, IN: Indiana University Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Max J. Egenhofer
    • 1
    • 2
  • David M. Mark
    • 3
    • 4
  1. 1.National Center for Geographic Information and AnalysisUniversity of MaineOronoUSA
  2. 2.Department of Spatial Information Science and Engineering Department of Computer ScienceUniversity of MaineOronoUSA
  3. 3.National Center for Geographic Information and AnalysisState University of New York at BuffaloBuffaloUSA
  4. 4.Department of GeographyState University of New York at BuffaloBuffaloUSA

Personalised recommendations