Fast priority queues for parallel branch-and-bound

  • Peter Sanders
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 980)


Currently used parallel best first branch-and-bound algorithms either suffer from contention at a centralized priority queue or can only approximate the best first strategy. Bottleneck free algorithms for parallel priority queues are known but they cannot be implemented very efficiently on contemporary machines.

We present quite simple randomized algorithms for parallel priority queues on distributed memory machines. For branch-and-bound they are asymptotically as efficient as previously known PRAM algorithms with high probability. The simplest versions require not much more communication than the approximated branch-and-bound algorithm of Karp and Zhang.


Analysis of randomized algorithms distributed memory load balancing median selection parallel best first branch-and-bound parallel pritority queue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-Hill, 1990.Google Scholar
  2. 2.
    G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal of Parallel and Distributed Computing, 7:279–301, 1989.CrossRefGoogle Scholar
  3. 3.
    S. K. Das, M. C. Pinotti, and F. Sarkar. Optimal parallel priority queues in distributed memory hypercubes. Technical Report CRPDC-94-23, University of North Texas, Denton, December 1994.Google Scholar
  4. 4.
    N. Deo and S. Prasad. Parallel heap: An optimal parallel priority queue. The Journal of Supercomputing, 6(1):87–98, Mar. 1992.CrossRefGoogle Scholar
  5. 5.
    M. Dion, M. Gengler, and S. Ubeda. Comparing two probabilistic models of the computational complexity of the branch and bound algorithm. In CON-PAR/VAPP, LNCS, pages 359–370, Linz, 1994. Springer.Google Scholar
  6. 6.
    A. K. Gupta and A. G. Phoutiou. Load balanced priority queue implementations on distributed memory parallel machines. In Sixth International Conference on Parallel Architectures and Languages Europe, number 817 in LNCS, pages 689–700, Athens, July 1994. Springer.Google Scholar
  7. 7.
    D. Henrich. Lastverteilung für Branch-and-bound auf eng-gekoppelten Parallelrechnern. Dissertation, Universität Karlsruhe, 1994.Google Scholar
  8. 8.
    D. Ierardi. 2d-bubblesorting in average time O(√ N lg N). In ACM Symposium on Parallel Architectures and Algorithms, 1994.Google Scholar
  9. 9.
    R. M. Karp and Y. Zhang. Parallel algorithms for backtrack search and branch-and-bound. Journal of the ACM, 40(3):765–789, 1993.CrossRefGoogle Scholar
  10. 10.
    G. Karypis and V. Kumar. Unstructured tree search on SIMD parallel computers. IEEE Transactions on Parallel and Distributed Systems, 5(10):1057–1072, 1994.CrossRefGoogle Scholar
  11. 11.
    D. E. Knuth. The Art of Computer Programming — Sorting and Searching, volume 3. Addison Wesley, 1973.Google Scholar
  12. 12.
    T. Lauer. Adaptive dynamische Lastbalancierung. PhD thesis, Max Planck Institute for Computer Science Saarbrücken, 1995.Google Scholar
  13. 13.
    P. S. Laursen. Simple approaches to parallel branch and bound. Parallel Computing, 19:143–152, 1993.CrossRefGoogle Scholar
  14. 14.
    T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan Kaufmann, 1992.Google Scholar
  15. 15.
    F. C. Lin and R. M. Keller. The gradient model load balancing method. IEEE Transactions on Software Engineering, 13(1):32–38, 1987.Google Scholar
  16. 16.
    R. Lüling and B. Monien. A dynamic load balancing algorithm with provable good performance. Technical report, Universität Paderborn, 1994.Google Scholar
  17. 17.
    R. Lüling, B. Monien, and F. Ramme. Load balancing in large networks: A comparative case study. In 3th IEEE Symposium on Parallel and Distributed Processing. IEEE, 1991.Google Scholar
  18. 18.
    G. P. McKeown, V. J. Rayward-Smith, and S. A. Rush. Parallel branch-and-bound. In Advances in Parallel Algorithms, pages 349–362. Blackwell, 1992.Google Scholar
  19. 19.
    C. G. Plaxton. On the network complexity of selection. In Foundations of Computer Science, pages 396–401. IEEE, 1989.Google Scholar
  20. 20.
    C. Powley, C. Ferguson, and R. E. Korf. Depth-fist heuristic search on a SIMD machine. Artificial Intelligence, 60:199–242, 1993.CrossRefGoogle Scholar
  21. 21.
    S. Rajasekaran. Randomized parallel selection. In Tenth Conference on Foundations of Software Technology and Theoretical Computer Science, number 472 in LNCS, pages 215–224, Bangalore, 1990. Springer.Google Scholar
  22. 22.
    A. Ranade. A simpler analysis of the Karp-Zhang parallel branch-and-bound method. Technical report, University of California Berkeley, 1990.Google Scholar
  23. 23.
    A. Ranade, S. Cheng, E. Deprit, J. Jones, and S. Shih. Parallelism and locality in priority queues. In Sixth IEEE Sypmposium on Parallel and Distributed Processing, pages 97–103, October 1994.Google Scholar
  24. 24.
    V. N. Rao and V. Kumar. Concurrent access of priority queues. IEEE Transactions on Computers, 37(12):1657–1665, 1988.CrossRefGoogle Scholar
  25. 25.
    R. Reischuk. Probabilistic parallel algorithms for sorting and selection. SIAM Journal on Computing, 14(2):396 409, 1985.CrossRefGoogle Scholar
  26. 26.
    P. Sanders. Flaschenhalsfreie parallele Priority queues. In PARS Workshop, Potsdam, volume 13 of PARS Mitteilungen, pages 10–19, 1994.Google Scholar
  27. 27.
    P. Sanders. Better algorithms for parallel backtracking. In Workshop on Algorithms for Irregularly Structured Problems, LNCS, Lyon, 1995. Springer.Google Scholar
  28. 28.
    J. Song. A partially asynchronous and iterative algorithm for distributed load balancing. Parallel Computing, 20:853–868, 1994.CrossRefGoogle Scholar
  29. 29.
    M. H. Willebeek-LeMair and A. P. Reeves. Strategies for dynamic load balancing on highly parallel computers. IEEE Transactions on Parallel and Distributed Systems, 4(9), 1993.Google Scholar
  30. 30.
    C. Xu and F. C. Lau. Optimal parameters for load balancing with the diffusion method in mesh networks. Parallel Processing Letters, 4(1):139–147, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Peter Sanders
    • 1
  1. 1.University of KarlsruheKarlsruheGermany

Personalised recommendations