A reconfigurable parallel algorithm for sparse Cholesky factorization

  • A. Benaini
  • D. Laiymani
  • G. R. Perrin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 980)


This paper describes an efficient multi-phase parallel algorithm for sparse Cholesky factorization. The algorithm is simple in its concept and takes ideas from Kumar and Gupta [13] and Roman [18]. We adapt the sub-tree to sub-cube mapping strategy introduced by George et al [9] to reconfigurable parallel machines which allows an improvement in communication performances. In the case of regular grid problems our algorithm incurs less communication overhead and is more scalable that the known parallel sparse Cholesky factorization [9, 13]. Furthermore, we extend our algorithm to the case of the block Cholesky factorization. The different simulation results confirm our analysis and produce good speedup.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J-M. Adamo and L. Trejo. Programming Environment for Phase-reconfigurable Parallel Programming on Supernode. Journal of Parallel and Distributed Computing, 23:278–292, 1994.CrossRefGoogle Scholar
  2. 2.
    A. Benaini. The WW T factorization of dense and sparse matrices. Intern. J. Computer Math., 56:219–229, 1995.Google Scholar
  3. 3.
    A. Benaini and D. Laiymani. A Multi-phase Gossip Procedure: Application to Matrices Factorization. In Int. Conf. Software for Multiprocessors and Supercomputers, pages 426–434, 1994.Google Scholar
  4. 4.
    A. Benaini and D. Laiymani. Parallel Block Generalized WZ Factorization on a Reconfigurable Machine. In Proc. of International Conference on Parallel and Distributed Systems. IEEE Computer Society, December 1994.Google Scholar
  5. 5.
    M. Cosnard. A comparison of parallel machine models from the point of view of scalability. In Proc. of MPCS'94, pages 258–267. IEEE Computer Society, 1994.Google Scholar
  6. 6.
    F. Desprez. Procédure de Base pour le Calcul Scientifique sur Machines Parallèles a Mémoire Distribuée. PhD thesis, Institut National Polytechnique de Grenoble, 1994.Google Scholar
  7. 7.
    I. Duff. Parallel implementation of multifrontal schemes. Parallel Computing, pages 193–204, 1986.Google Scholar
  8. 8.
    A. George and J.W-H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, 1981.Google Scholar
  9. 9.
    A. George, J.W-H Lui, and E. Ng. Communication results for parallel sparse Cholesky factorization on a hypercube. Parallel Computing, 10:287–298, 1989.CrossRefGoogle Scholar
  10. 10.
    J.A. George, M.T. Heath, J.W-H. Liu, and E.G-Y. Ng. Sparse Cholesky factorization on a local-memory multiprocessor. SIAM J. Sci. Statis. Comput., 8:327–340, 1988.CrossRefGoogle Scholar
  11. 11.
    J.A. George and J.W-H. Lui. An Automatic Nested Dissection Algorithm of Irregular Finite Element Problems. SIAM J. Numerical Analysis, 15:1053–1069, 1978.CrossRefGoogle Scholar
  12. 12.
    J.A. George and J.W-H. Lui. A Fast Implementation of the Minimum Degree Algorithm Using Quotient Graphs. ACM Trans. Math. Software, 6:337–358, 1980.CrossRefGoogle Scholar
  13. 13.
    A. Gupta and V. Kumar. A Scalable Parallel Algorithm for Sparse Cholesky Factorization. In Proc. of Supercomputing '94, 1994.Google Scholar
  14. 14.
    M. Hahad, J. Erhel, and T. Priol. A New Approach to Parallel Sparse Cholesky Factorization on Distributed Memory Parallel Computers. Technical Report 2081, INRIA, 1993.Google Scholar
  15. 15.
    J.W-H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl., 11:134–172, 1990.CrossRefGoogle Scholar
  16. 16.
    A. Gupta nad V. Kumar. Analysing Scalability of Parallel Algorithms and Architectures. Technical Report 91-54, Department of Computer Science-University of Minnesota-Minneapolis, 1991.Google Scholar
  17. 17.
    A. Pothen. The Complexity of Optimal Elimination Trees. Technical Report CS-88-16, Pennsylvania State University, 1988.Google Scholar
  18. 18.
    J. Roman. Partitionnement algorithmique des données pour la factorization de cholesky par bloc de grands systèmes linéaires creux sur des calculateurs mimd. Calculateurs Parallèles, 6:115–120, 1994.Google Scholar
  19. 19.
    E. Rothberg. Performance of panel and block approaches to sparse Cholesky factorization on the ipsc/860 and paragon multicomputers. In Proceedings of the 1994 Scalable High Performance Computing Conference, May 1994.Google Scholar
  20. 20.
    E. Rothberg and A. Gupta. A efficient block-oriented approach to parallel sparse Cholesky factorization. In Supercomputong '92 Proceedings, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • A. Benaini
    • 1
  • D. Laiymani
    • 1
  • G. R. Perrin
    • 2
  1. 1.LIB Université de Franche-ComtéBesancon CedexFrance
  2. 2.ICPS Université Strasbourg IIllkirchFrance

Personalised recommendations