Approximation algorithms for time constrained scheduling

  • Klaus Jansen
  • Sabine Öhring
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 980)


In this paper we consider the following time constrained scheduling problem. Given a set of jobs J with execution times e(j) ∈ (0, 1] and an undirected graph G=(J, E), we consider the problem to find a schedule for the jobs such that adjacent jobs (j,j′) ∈ E are assigned to different machines and that the total execution time for each machine is at most 1.

The goal is to find a minimum number of machines to execute all jobs under this time constraint. This scheduling problem is a natural generalization of the classical bin packing problem. We propose and analyse several approximation algorithms with constant absolute worst case ratio for graphs that can be colored in polynomial time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Biró, M. Hujter and Z. Tuza, Precoloring extension. I. Interval graphs, Disc. Math., 100 (1991) 267–279.CrossRefGoogle Scholar
  2. 2.
    H.L. Bodlaender, K. Jansen and G.J. Woeginger, Scheduling with incompatible jobs, Workshop Graph Theoretical Concepts in Computer Science, LNCS 657 (1992) 37–49.Google Scholar
  3. 3.
    H.L. Bodlaender and K. Jansen, On the complexity of scheduling incompatible jobs with unit-times, Mathematical Foundations of Computer Science, LNCS 711 (1993) 291–300.Google Scholar
  4. 4.
    A. Brandstädt, Special Graph Classes — a Survey. Report SM-DU-199, Universität — Gesamthochschule Duisburg (1991).Google Scholar
  5. 5.
    A.K. Chandra, D.S. Hirschberg and C.K. Wong, Bin packing with geometric constraints in computer network design, Research Report RC 6895, IBM Research Center, Yorktown Heights, New York (1977).Google Scholar
  6. 6.
    E.G. Coffman, Jr., M.R. Garey and D.S. Johnson, Approximation algorithms for bin-packing — an updated survey, Algorithmic Design for Computer System Design, G. Ausiello, M. Lucertini, P. Serafini (eds.), Springer Verlag (1984) 49–106.Google Scholar
  7. 7.
    M.R. Garey, R.L. Graham, D.S. Johnson and A.C.-C. Yao, Resource constrained scheduling as generalized bin packing, J. Combin. Theory (A), 21 (1976) 257–298.CrossRefGoogle Scholar
  8. 8.
    M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, San Francisco, 1979.Google Scholar
  9. 9.
    M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, London, 1980.Google Scholar
  10. 10.
    M. Hujter and Z. Tuza, Precoloring extension. II. Graph classes related to bipartite graphs, Acta Math. Univ. Comenianae, 61 (1993).Google Scholar
  11. 11.
    M. Hujter and Z. Tuza, Precoloring extension. III. Classes of perfect graphs, unpublished manuscript (1993).Google Scholar
  12. 12.
    K. Jansen and P. Scheffler, Generalized coloring for tree-like graphs, Workshop Graph Theoretical Concepts in Computer Science, LNCS 657 (1992) 50–59.Google Scholar
  13. 13.
    K. Jansen and S. Öhring, Approximation algorithms for the time constrained scheduling problem, Forschungsbericht, Technische Universität München (1995).Google Scholar
  14. 14.
    D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey and R.L. Graham, Worst-case performance bounds for simple one-dimensional packing algorithms, SIAM J. Comput., 3 (1974) 256–278.CrossRefGoogle Scholar
  15. 15.
    J. Kratochvil, Precoloring extension with fixed color bound, Acta Math. Univ. Comenianae, 62 (1993) 139–153.Google Scholar
  16. 16.
    C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, Symposium on the Theory of Computing (1993) 286–293.Google Scholar
  17. 17.
    Y. Minyi, A simple proof of the inequality FFD(L)≤11/9 OPT(L)+1, ∀L for the FFD bin-packing algorithm, Acta Math. Appl. Sinica, 7 (1991) 321–331.Google Scholar
  18. 18.
    D. Simchi-Levi, New worst-case results for the bin-packing problem, Naval Research Logistics, to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Klaus Jansen
    • 1
  • Sabine Öhring
    • 2
  1. 1.Institut für InformatikTechnische Universität MünchenMünchenGermany
  2. 2.Department of Computer ScienceUniversity of North TexasDentonUSA

Personalised recommendations