Skip to main content

0/1-Integer programming: Optimization and Augmentation are equivalent

Session 8. Chair: Michael Juenger

Part of the Lecture Notes in Computer Science book series (LNCS,volume 979)


For every family of sets \(\mathcal{F} \subseteq \{ 0,1\} ^n\)the following problems are strongly polynomial time equivalent: given a feasible point x0\(\mathcal{F}\)and a linear objective function c ∈ ℤ n,

  • find a feasible point x * \(\mathcal{F}\)that maximizes c x (Optimization),

  • find a feasible point x new\(\mathcal{F}\)with cx new > cx 0 (Augmentation), and

  • find a feasible point xnew\(\mathcal{F}\)with cx new > c x 0 such that x newx 0 is “irreducible” (Irreducible Augmentation).

This generalizes results and techniques that are well known for 0/1-integer programming problems that arise from various classes of combinatorial optimization problems.


  • Polynomial Time
  • Polynomial Time Algorithm
  • Feasible Point
  • Linear Objective Function
  • Augmentation Problem

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Andreas S. Schulz has been supported by the graduate school “Algorithmische Diskrete Mathematik”. The graduate school “Algorithmische Diskrete Mathematik” is supported by the Deutsche Forschungsgemeinschaft (DFG), grant We 1265/2-1.

Günter M. Ziegler acknowledges support by a DFG Gerhard-Hess-Forschungsförderungspreis.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-60313-1_164
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-44913-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin: Network Flows: Theory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs NJ, 1993.

    Google Scholar 

  2. Jack Edmonds and Richard M. Karp: Theoretical improvements in algorithmic efficiency for network flow problems, Journal of the Association for Computing Machinery 19 (1972), 248–264.

    Google Scholar 

  3. András Frank and Éva Tardos: An application of simultaneous Diophantine approximation in combinatorial optimization, Combinatorica 7 (1987), 49–65.

    Google Scholar 

  4. Harold N. Gabow: Scaling algorithms for network problems, Journal of Computer and System Sciences 31 (1985), 148–168.

    Google Scholar 

  5. Martin Grötschel and László Lovász: Combinatorial Optimization, Chapter 28 of the Handbook on Combinatorics, R. Graham, M. Grötschel, and L. Lovász (eds.), to appear.

    Google Scholar 

  6. Martin Grötschel, László Lovász, and Alexander Schrijver: Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics 2, Springer, Berlin, 1988; Second edition 1993.

    Google Scholar 

  7. László Lovász: An Algorithmic Theory of Numbers, Graphs and Convexity, CBMS-NSF Regional Conference Series in Applied Mathematics 50, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1986.

    Google Scholar 

  8. Hans Röck: Scaling techniques for minimal cost network flows, in: V. Page (ed.), Discrete Structures and Algorithms, Carl Hanser, Munich, 1980, pp. 181–191.

    Google Scholar 

  9. Alexander Schrijver: Theory of Linear and Integer Programming, John Wiley & Sons, Chichester, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulz, A.S., Weismantel, R., Ziegler, G.M. (1995). 0/1-Integer programming: Optimization and Augmentation are equivalent. In: Spirakis, P. (eds) Algorithms — ESA '95. ESA 1995. Lecture Notes in Computer Science, vol 979. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60313-9

  • Online ISBN: 978-3-540-44913-3

  • eBook Packages: Springer Book Archive