0/1-Integer programming: Optimization and Augmentation are equivalent

  • Andreas S. Schulz
  • Robert Weismantel
  • Günter M. Ziegler
Session 8. Chair: Michael Juenger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 979)

Abstract

For every family of sets \(\mathcal{F} \subseteq \{ 0,1\} ^n\)the following problems are strongly polynomial time equivalent: given a feasible point x0\(\mathcal{F}\)and a linear objective function c ∈ ℤn,
  • find a feasible point x*\(\mathcal{F}\)that maximizes c x (Optimization),

  • find a feasible point xnew\(\mathcal{F}\)with cxnew > cx0 (Augmentation), and

  • find a feasible point xnew\(\mathcal{F}\)with cxnew > c x0 such that xnewx0 is “irreducible” (Irreducible Augmentation).

This generalizes results and techniques that are well known for 0/1-integer programming problems that arise from various classes of combinatorial optimization problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AMO93]
    Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin: Network Flows: Theory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs NJ, 1993.Google Scholar
  2. [EK72]
    Jack Edmonds and Richard M. Karp: Theoretical improvements in algorithmic efficiency for network flow problems, Journal of the Association for Computing Machinery 19 (1972), 248–264.Google Scholar
  3. [FT87]
    András Frank and Éva Tardos: An application of simultaneous Diophantine approximation in combinatorial optimization, Combinatorica 7 (1987), 49–65.Google Scholar
  4. [Gab85]
    Harold N. Gabow: Scaling algorithms for network problems, Journal of Computer and System Sciences 31 (1985), 148–168.Google Scholar
  5. [GL]
    Martin Grötschel and László Lovász: Combinatorial Optimization, Chapter 28 of the Handbook on Combinatorics, R. Graham, M. Grötschel, and L. Lovász (eds.), to appear.Google Scholar
  6. [GLS88]
    Martin Grötschel, László Lovász, and Alexander Schrijver: Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics 2, Springer, Berlin, 1988; Second edition 1993.Google Scholar
  7. [Lov86]
    László Lovász: An Algorithmic Theory of Numbers, Graphs and Convexity, CBMS-NSF Regional Conference Series in Applied Mathematics 50, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1986.Google Scholar
  8. [Rö80]
    Hans Röck: Scaling techniques for minimal cost network flows, in: V. Page (ed.), Discrete Structures and Algorithms, Carl Hanser, Munich, 1980, pp. 181–191.Google Scholar
  9. [Sch86]
    Alexander Schrijver: Theory of Linear and Integer Programming, John Wiley & Sons, Chichester, 1986.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Andreas S. Schulz
    • 1
  • Robert Weismantel
    • 2
  • Günter M. Ziegler
    • 3
  1. 1.Technische Universität Berlin, Fachbereich Mathematik (MA 6-1)BerlinGermany
  2. 2.Konrad-Zuse-Zentrum für Informationstechnik BerlinBerlinGermany
  3. 3.Technische Universität Berlin, Fachbereich Mathematik (MA 6-1)BerlinGermany

Personalised recommendations