Advertisement

Approximating the bandwidth for asteroidal triple-free graphs

  • T. Kloks
  • D. Kratsch
  • H. Müller
Session 7. Chair: Michael Goemans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 979)

Abstract

We show that there is an O(n3) algorithm to approximate the bandwidth of an AT-free graph with worst case performance ratio 2. Alternatively, at the cost of the approximation factor, we can also obtain an O(e+n log n) algorithm to approximate the bandwidth of an AT-free graph within a factor 4. For the special cases of permutation graphs and trapezoid graphs we obtain O(n log n) algorithms with worst case performance ratio 2. For cocomparability graphs we obtain an O(n2) algorithm with worst case performance ratio 3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnborg, S., D. G. Corneil and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM Journal on Algebraic and Discrete Methods 8 (1987), pp. 277–284.Google Scholar
  2. 2.
    Assmann, S. F., G. W. Peck, M. M. Syslo and J. Zak, The bandwidth of caterpillars with hairs of length 1 and 2, SIAM Journal on Algebraic and Discrete Methods 2 (1981), pp. 387–393.Google Scholar
  3. 3.
    Bodlaender, H., M. R. Fellows and M. T. Hallet, Beyond NP-completeness for problems of bounded width: Hardness for the W hierarchy, Proceedings of the 26th STOC, 1994, pp. 449–458.Google Scholar
  4. 4.
    Chinn, P.Z., J. Chvátalová, A.K. Dewdney, N.E. Gibbs, The bandwidth problem for graphs and matrices — a survey, Journal of Graph Theory 6 (1982), pp. 223–254.Google Scholar
  5. 5.
    D.G. Corneil, S. Olariu, and L. Stewart, Asteroidal triple-free graphs, Proceedings of the 19th International Workshop on Graph-Theoretic Concepts in Computer Science WG'93, Lecture Notes in Computer Science, Vol. 790, Springer-Verlag, 1994, pp. 211–224.Google Scholar
  6. 6.
    Corneil, D. G., S. Olariu and L. Stewart, Linear time algorithms to compute dominating pairs in asteroidal triple-free graphs. To appear in: Proceedings ICALP'95.Google Scholar
  7. 7.
    Dahlhaus, E. and M. Karpinski, An efficient parallel algorithm for the minimal elimination ordering (MEO) of an arbitrary graph, Proceedings of the 30th FOCS, 1989, pp. 454–459.Google Scholar
  8. 8.
    Garey, M. R., R. L. Graham, D. S. Johnson and D. E. Knuth, Complexity results for bandwidth minimization, SIAM Journal on Applied Mathematics 34 (1978), pp. 477–495.Google Scholar
  9. 9.
    Golumbic, M. C., Algorithmic graph theory and perfect graphs, Academic Press, New York, 1980.Google Scholar
  10. 10.
    Gurari, E. and I. H. Sudborough, Improved dynamic programming algorithms for the bandwidth minimization and the mincut linear arrangement problem, Journal on Algorithms, 5, (1984), pp. 531–546.Google Scholar
  11. 11.
    Kaplan, H. and R. Shamir, Pathwidth, bandwidth and completion problems to proper interval graphs with small cliques. Manuscript, 1993.Google Scholar
  12. 12.
    Kleitman, D.J. and R.V. Vohra, Computing the bandwidth of interval graphs, SIAM Journal on Discrete Mathematics 3 (1990), pp. 373–375.Google Scholar
  13. 13.
    Kloks, T., Treewidth — Computations and Approximations, Springer-Verlag, Lecture Notes in Computer Science 842, 1994.Google Scholar
  14. 14.
    Kloks, T., D. Kratsch and H. Müller, Approximating the bandwidth for asteroidal triple-free graphs, Forschungsergebnisse Math/95/6, Friedrich-Schiller-Universität Jena, Germany, 1995.Google Scholar
  15. 15.
    Kloks, T., D. Kratsch and J. Spinrad, Treewidth and pathwidth of cocomparability graphs of bounded dimension, Computing Science Notes 93/46, Eindhoven University of Technology, Eindhoven, The Netherlands, 1993.Google Scholar
  16. 16.
    Mahesh, R., C. Pandu Rangan and Aravind Srinivasan, On finding the minimum bandwidth of interval graphs, Information and Computation 95 (1991), pp. 218–224.Google Scholar
  17. 17.
    Möhring, R. H., Triangulating graphs without asteroidal triples. Technical Report 365/1993, Technische Universität Berlin, Fachbereich Mathematik, 1993.Google Scholar
  18. 18.
    Monien, B., The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete, SIAM Journal on Algebraic and Discrete Methods 7 (1986), pp. 505–512.Google Scholar
  19. 19.
    Ohtsuki, T., A fast algorithm for finding an optimal ordering for vertex elimination on a graph, SIAM J. Comput. 5 (1976), pp. 133–145.Google Scholar
  20. 20.
    Papadimitriou, C.H., The NP-completeness of the bandwidth minimization problem, Computing 16 (1976), pp. 263–270.Google Scholar
  21. 21.
    Parra, A. and P. Scheffler, Treewidth equals bandwidth for AT-free claw-free graphs. Technical Report 436/1995, Technische Universität Berlin, Fachbereich Mathematik, 1995.Google Scholar
  22. 22.
    Peck, G. W. and Aditya Shastri, Bandwidth of theta graphs with short paths, Discrete Mathematics 103 (1992), 177–187.CrossRefGoogle Scholar
  23. 23.
    Roberts, F. S., Indifference graphs, In: Proof techniques in graph theory, (F. Harary, ed.), pp. 139–146. Academic Press, New York, (1969).Google Scholar
  24. 24.
    Rose, D. J., R. E. Tarjan and G. Lueker, Algorithmic aspects of vertex elimination of graphs, SIAM J. Comput. 5 (1976), pp. 266–283.CrossRefGoogle Scholar
  25. 25.
    Spinrad, J., On comparability and permutation graphs, SIAM J. on Comput. 14 (1985), pp. 658–670.MathSciNetGoogle Scholar
  26. 26.
    Sprague, A. P., An O(n log n) algorithm for bandwidth of interval graphs, SIAM Journal on Discrete Mathematics 7 (1994), pp. 213–220.CrossRefGoogle Scholar
  27. 27.
    Turner, J. S., On the probable performance of heuristics for bandwidth minimization, SIAM J. Comput., 15, (1986), pp. 561–580.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • T. Kloks
    • 1
  • D. Kratsch
  • H. Müller
    • 2
  1. 1.Department of Mathematics and Computing ScienceEindhoven University of TechnologyMB EindhovenThe Netherlands
  2. 2.Fakultät für Mathematik und InformatikFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations