Abstract
We introduce the maximum skew-symmetric flow problem which generalizes flow and matching problems. We develop a theory of skew-symmetric flows that is parallel to the classical flow theory. We use the newly developed theory to extend, in a natural way, the blocking flow method of Dinitz to the skew-symmetric flow case. In the special case of the skew-symmetric flow problem that corresponds to cardinality matching, our algorithm is simpler and more efficient than the corresponding matching algorithm.
The first author was supported in part by NSF Grant CCR-9307045.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
G. M. Adel'son-Vel'ski, E. A. Dinits, and A. V. Karzanov. Flow Algorithms Nauka, Moscow, 1975. In Russian.
R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved Time Bounds for the Maximum Flow Problem. SIAM J. Comput., 18:939–954, 1989.
N. Blum. A New Approach to Maximum Matching in General Graphs. In Proc. ICALP, pages 586–597, 1990.
N. Blum. A New Approach to Maximum Matching in General Graphs. Technical report, Institut für Informatik der Universität Bonn, 1990.
J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a Maximum Flow be Computed in o(nm) Time? In Proc. ICALP, 1990.
D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. Assoc. Comput. Mach., 32:652–686, 1985.
E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation. Soviet Math. Dokl., 11:1277–1280, 1970.
J. Edmonds. Paths, Trees and Flowers. Canada J. Math., 17:449–467, 1965.
J. Edmonds and E. L. Johnson. Matching, a Well-Solved Class of Integer Linear Programs. In R. Guy, H. Haneni, and J. Schönhein, editors, Combinatorial Structures and Their Applications, pages 89–92. Gordon and Breach, NY, 1970.
J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. Assoc. Comput. Mach., 19:248–264, 1972.
S. Even and R. E. Tarjan. Network Flow and Testing Graph Connectivity. SIAM J. Comput., 4:507–518, 1975.
T. Feder and R. Motwani. Clique Partitions, Graph Compression and Speeding-up Algorithms. In Proc. 23st Annual ACM Symposium on Theory of Computing, pages 123–133, 1991.
L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962.
H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graphmatching problems. J. Assoc. Comput. Mach., 38:815–853, 1991.
A. V. Goldberg and A. V. Karzanov. Path Problems in Skew-Symmetric Graphs. Technical Report STAN-CS-93-1489, Department of Computer Science, Stanford University, 1993.
A. V. Goldberg and A. V. Karzanov. Path Problems in Skew-Symmetric Graphs. In Proc. 5th ACM-SIAM Symposium on Discrete Algorithms, pages 526–535, 1994.
A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach., 35:921–940, 1988.
A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Successive Approximation. Math. of Oper. Res., 15:430–466, 1990.
A. V. Karzanov. O nakhozhdenii maksimal'nogo potoka v setyakh spetsial'nogo vida i nekotorykh prilozheniyakh. In Matematicheskie Voprosy Upravleniya Proizvodstvom, volume 5. Moscow State University Press, Moscow, 1973. In Russian; title translation: On Finding Maximum Flows in Network with Special Structure and Some Applications.
A. V. Karzanov. Tochnaya otzenka algoritma nakhojdeniya maksimalnogo potoka, primenennogo k zadache “o predstavitelyakh”. In Problems in Cibernetics, volume 5, pages 66–70. Nauka, Moscow, 1973. In Russian; title translation: The exact time bound for a maximum flow algorithm applied to the set representatives problem.
V. King, S. Rao, and R. Tarjan. A Faster Deterministic Maximum Flow Algorithm. J. Algorithms, 17:447–474, 1994.
E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and Winston, New York, NY., 1976.
L. Lovász and M. D. Plummer. Matching Theory. Akadémiai Kiadó, Budapest, 1986.
S. Micali and V. V. Vazirani. An O(√¦V∥E¦) algorithm for finding maximum matching in general graphs. In Proc. 21th IEEE Annual Symposium on Foundations of Computer Science, pages 17–27, 1980.
V. V. Vazirani. A Theory of Alternating Paths and Blossoms for Proving Correctness of the O(√VE) General Graph Maximum Matching Algorithm. Combinatorica, to appear.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goldberg, A.V., Karzanov, A.V. (1995). Maximum skew-symmetric flows. In: Spirakis, P. (eds) Algorithms — ESA '95. ESA 1995. Lecture Notes in Computer Science, vol 979. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60313-1_141
Download citation
DOI: https://doi.org/10.1007/3-540-60313-1_141
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60313-9
Online ISBN: 978-3-540-44913-3
eBook Packages: Springer Book Archive