Skip to main content

Maximum skew-symmetric flows

  • Session 3. Chair: Giuseppe Italiano
  • Conference paper
  • First Online:
Algorithms — ESA '95 (ESA 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 979))

Included in the following conference series:

Abstract

We introduce the maximum skew-symmetric flow problem which generalizes flow and matching problems. We develop a theory of skew-symmetric flows that is parallel to the classical flow theory. We use the newly developed theory to extend, in a natural way, the blocking flow method of Dinitz to the skew-symmetric flow case. In the special case of the skew-symmetric flow problem that corresponds to cardinality matching, our algorithm is simpler and more efficient than the corresponding matching algorithm.

The first author was supported in part by NSF Grant CCR-9307045.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. M. Adel'son-Vel'ski, E. A. Dinits, and A. V. Karzanov. Flow Algorithms Nauka, Moscow, 1975. In Russian.

    Google Scholar 

  2. R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved Time Bounds for the Maximum Flow Problem. SIAM J. Comput., 18:939–954, 1989.

    Article  Google Scholar 

  3. N. Blum. A New Approach to Maximum Matching in General Graphs. In Proc. ICALP, pages 586–597, 1990.

    Google Scholar 

  4. N. Blum. A New Approach to Maximum Matching in General Graphs. Technical report, Institut für Informatik der Universität Bonn, 1990.

    Google Scholar 

  5. J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a Maximum Flow be Computed in o(nm) Time? In Proc. ICALP, 1990.

    Google Scholar 

  6. D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. Assoc. Comput. Mach., 32:652–686, 1985.

    Google Scholar 

  7. E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation. Soviet Math. Dokl., 11:1277–1280, 1970.

    Google Scholar 

  8. J. Edmonds. Paths, Trees and Flowers. Canada J. Math., 17:449–467, 1965.

    Google Scholar 

  9. J. Edmonds and E. L. Johnson. Matching, a Well-Solved Class of Integer Linear Programs. In R. Guy, H. Haneni, and J. Schönhein, editors, Combinatorial Structures and Their Applications, pages 89–92. Gordon and Breach, NY, 1970.

    Google Scholar 

  10. J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. Assoc. Comput. Mach., 19:248–264, 1972.

    Google Scholar 

  11. S. Even and R. E. Tarjan. Network Flow and Testing Graph Connectivity. SIAM J. Comput., 4:507–518, 1975.

    Article  Google Scholar 

  12. T. Feder and R. Motwani. Clique Partitions, Graph Compression and Speeding-up Algorithms. In Proc. 23st Annual ACM Symposium on Theory of Computing, pages 123–133, 1991.

    Google Scholar 

  13. L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962.

    Google Scholar 

  14. H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graphmatching problems. J. Assoc. Comput. Mach., 38:815–853, 1991.

    Google Scholar 

  15. A. V. Goldberg and A. V. Karzanov. Path Problems in Skew-Symmetric Graphs. Technical Report STAN-CS-93-1489, Department of Computer Science, Stanford University, 1993.

    Google Scholar 

  16. A. V. Goldberg and A. V. Karzanov. Path Problems in Skew-Symmetric Graphs. In Proc. 5th ACM-SIAM Symposium on Discrete Algorithms, pages 526–535, 1994.

    Google Scholar 

  17. A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach., 35:921–940, 1988.

    Google Scholar 

  18. A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Successive Approximation. Math. of Oper. Res., 15:430–466, 1990.

    Google Scholar 

  19. A. V. Karzanov. O nakhozhdenii maksimal'nogo potoka v setyakh spetsial'nogo vida i nekotorykh prilozheniyakh. In Matematicheskie Voprosy Upravleniya Proizvodstvom, volume 5. Moscow State University Press, Moscow, 1973. In Russian; title translation: On Finding Maximum Flows in Network with Special Structure and Some Applications.

    Google Scholar 

  20. A. V. Karzanov. Tochnaya otzenka algoritma nakhojdeniya maksimalnogo potoka, primenennogo k zadache “o predstavitelyakh”. In Problems in Cibernetics, volume 5, pages 66–70. Nauka, Moscow, 1973. In Russian; title translation: The exact time bound for a maximum flow algorithm applied to the set representatives problem.

    Google Scholar 

  21. V. King, S. Rao, and R. Tarjan. A Faster Deterministic Maximum Flow Algorithm. J. Algorithms, 17:447–474, 1994.

    Article  Google Scholar 

  22. E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and Winston, New York, NY., 1976.

    Google Scholar 

  23. L. Lovász and M. D. Plummer. Matching Theory. Akadémiai Kiadó, Budapest, 1986.

    Google Scholar 

  24. S. Micali and V. V. Vazirani. An O(√¦V∥E¦) algorithm for finding maximum matching in general graphs. In Proc. 21th IEEE Annual Symposium on Foundations of Computer Science, pages 17–27, 1980.

    Google Scholar 

  25. V. V. Vazirani. A Theory of Alternating Paths and Blossoms for Proving Correctness of the O(√VE) General Graph Maximum Matching Algorithm. Combinatorica, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Paul Spirakis

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, A.V., Karzanov, A.V. (1995). Maximum skew-symmetric flows. In: Spirakis, P. (eds) Algorithms — ESA '95. ESA 1995. Lecture Notes in Computer Science, vol 979. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60313-1_141

Download citation

  • DOI: https://doi.org/10.1007/3-540-60313-1_141

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60313-9

  • Online ISBN: 978-3-540-44913-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics