Plausibilistic preprocessing of sparse range images

  • Björn Krebs
  • Bernd Korn
  • Friedrich M. Wahl
Range and Acoustic Images
Part of the Lecture Notes in Computer Science book series (LNCS, volume 974)


Range image interpretation often suffers from contaminating noise and sparseness of the input data. Non-Gaussian errors occur if the physical conditions in the scene violate sensor restrictions. To deal with such drawbacks we present a new approach for range image preprocessing. To provide dense range information initial sparse data is augmented via appropriate interpolation. Furthermore, we propose a measure of plausibility which depends on the density of the initial data to judge the result of the interpolation.

Range image preprocessing perspective distortions non-Gaussian errors sparse range data plausibility 


  1. 1.
    P. J. Besl and R. C. Jain. Segmentation through variable-order surface fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(2):167–192, 1988.Google Scholar
  2. 2.
    R. Bolles and M. A. Fischer. A ransac-based approach to model fitting and its application finding cylinders in range data. In 7th Int. Conf. on Art. Int., Vancouver, pages 637–643, 1981.Google Scholar
  3. 3.
    K. Higuchi, M. Hebert, and K. Ikeuchi. Bulding 3-d models from unregisterd range images. In Proc. IEEE Conference of Robotics and Automation, San Diego, CA, pages 2248–2253, 1994.Google Scholar
  4. 4.
    J. M. Jolion, P. Meer, and S. Bataouche. Robust clustering with applications in computer vision. Pattern recognition, 13(8):791–802, 1991.Google Scholar
  5. 5.
    R. Krishnapuram and C. P. Freg. Fitting an unknown number of lines and planes to image data combatible cluster merging. Pattern Recognition, 25(4):385–400, 1992.Google Scholar
  6. 6.
    M. A. Penna and S. Chen. Image Understanding in Unstructured Enviroment, volume 2 of Series in Automation, chapter Sperical Analysis in Computer Vision and Image Understanding, pages 126–177. World Scientific, 1994.Google Scholar
  7. 7.
    D. A. Simon, M. Hebert, and T. Kanade. Real-time 3-d pose estimation using a high-speed range sensor. In Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, CA, volume 3, pages 2235–2240, 1994.Google Scholar
  8. 8.
    T. Stahs and F. M. Wahl. Fast and Versatile Range Data Acquisition in a Robot Work Cell. In Proc. IEEE Int. Conf. on on Intelligent Robots and Systems (IROS) 1992, Raleigh, North Carolina, 1992.Google Scholar
  9. 9.
    F. M. Wahl. A Coded Light Approach for 3D Vision. In IBM Research Report, RZ 1452, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Björn Krebs
    • 1
  • Bernd Korn
    • 1
  • Friedrich M. Wahl
    • 1
  1. 1.Institute for Robotics and Computer ControlTechnical University BraunschweigBraunschweigF.R.G.

Personalised recommendations