Advertisement

Bounds on the optimal elasticity parameters for a snake

  • Ole V. Larsen
  • Petia Radeva
  • Enric Martí
Segmentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 974)

Abstract

This paper develops a formalism by which an estimate for the upper and lower bounds for the elasticity parameters for a snake can be obtained. Objects different in size and shape give rise to different bounds. The bounds can be obtained based on an analysis of the shape of the object of interest. Experiments on synthetic images show a good correlation between the estimated behaviour of the snake and the one actually observed. Experiments on real X-ray images show that the parameters for optimal segmentation lie within the estimated bounds.

Keywords

snakes elasticity parameters segmentation 

References

  1. 1.
    I. Cohen, L. D. Cohen, and N. Ayache. Using deformable surfaces to segment 3-d images and infer differential structures. CVGIP: Image Understanding, 56(2):242–263, 1992.Google Scholar
  2. 2.
    M. Kass, A. Witkin, and D. Terzopolous. Snakes: Active contour models. In International Conference on Computer Vision, London, pages 259–268, 1987.Google Scholar
  3. 3.
    O.V. Larsen and P. Radeva. Calculating the bounds on the optimal parameters of elasticity for a snake. Technical report, Laboratory of Image Analysis, Aalborg University, Denmark, December 1994.Google Scholar
  4. 4.
    O.V. Larsen, P. Radeva, and E. Martí. Guidelines for choosing optimal parameters of elasticity for snakes. In Proceedings from CAIP'95 — International Conference on Computer Analysis and Image Processing (Accepted), 1995.Google Scholar
  5. 5.
    R. Samadani. Adaptive snakes: Control of damping and material parameters. In SPIE Geometric Methods in Computer Vision, volume 1570, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Ole V. Larsen
    • 1
  • Petia Radeva
    • 2
  • Enric Martí
    • 2
  1. 1.Laboratory of Image AnalysisAalborg UniversityDenmark
  2. 2.Computer Vision CenterAutonomous University of BarcelonaSpain

Personalised recommendations