Region-based segmentation of textured images

  • Catherine Rouquet
  • Pierre Bonton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 974)


This paper presents a region-based segmentation algorithm which can be applied to various problems since it does not require a priori knowledge concerning the kind of processed images. This algorithm, based on a split and merge method, gives results both on homogeneous grey level images and on textured images. We modeled exploited fields by Markov Random Fields (MRF), the segmentation is then optimally determined using the Iterated Conditional Modes (ICM). Results from road scenes without white lines are presented.


  1. 1.
    Derin, H.,Elliot, H.: Modeling and Segmenting of Noisy and Textured Images using Gibbs Random Fields. IEEE trans. on pattern analysis and machine intelligence PAMI 9 n 1 (1987)Google Scholar
  2. 2.
    DERRAS, M.: Segmentation non Supervisée d'Images Texturées par Champs de Markov: Application à l'Automatisation de l'Entretien des Espaces Naturels. Thèse de docteur es Sciences LASMEA Clermont-Ferrand (dec. 1993) 174 pGoogle Scholar
  3. 3.
    GEMAN, S., Graffigne, C: Markov random fields image and their applications to computer vision. Proceeding of the International Congress of Mathematicians Ed. A.M. Gleason American Mathematical Society Providence (1987)Google Scholar
  4. 4.
    HARALICK, R., SHANMUGAN, K.,DINSTEIN, H.: Textural Features for Image Classification. IEEE Transactions on Systems and cybernetics vol. SMC-3 (1973) 610–621Google Scholar
  5. 5.
    HOUZELLE, S., GIRAUDON, G.: Segmentation Région par Modélisation de Matrices de Cooccurrence. AFCET 8eme congrès Reconnaissance des formes et intelligence artificielle Lyon Villeurbanne vol 3 (Nov 1991)Google Scholar
  6. 6.
    KERVRANN, C., HEITZ, F.: A Markov Random Field Model-Based Approach to Unsupervised Texture Segmentation Using Local and Global Spatial Statistics. INRIA n 2062 (1993)Google Scholar
  7. 7.
    MURRAY, D.W., DUXTON, B.F.: Scene Segmentation from Visual Motion using Global Optimization. IEEE transactions on pattern analysis and machine intelligence vol PAMI 9 n 2 (1987) 220–228Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Catherine Rouquet
    • 1
  • Pierre Bonton
    • 1
  1. 1.LAboratoire des Sciences et Matériaux pour l'Electronique, et d'AutomatiqueURA 1793 CNRS- Université B. PascalAubière Cedex

Personalised recommendations