Fast computation of 3-D geometric moments using a discrete Gauss' theorem

  • Luren Yang
  • Fritz Albregtsen
  • Torfinn Taxt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 970)


A discrete Gauss' theorem is presented. Using a fast surface tracking algorithm and the discrete Gauss' theorem, we design a new method to compute the Cartesian geometric moments of 3-D objects. Compared to previous methods to compute such moments, the new method reduces the computational complexity significantly.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cyganski, D., Kreda, S. J., Orr, J. A.: Solving for the general linear transformation relating 3-D objects from the minimum moments. Proc. SPIE Vol. 1002, Intelligent Robots and Computer Vision VII (1988) 204–211Google Scholar
  2. 2.
    Gordon, D., Udupa, J. K.: Fast surface tracking in three-dimensional binary images. Comput. Vision Graph. Image Process. 45 (1989) 196–214Google Scholar
  3. 3.
    Hatamian, M.: A real-time two-dimensional moment generating algorithm and its single chip implementation. IEEE Trans. ASSP 34 (1986) 546–553Google Scholar
  4. 4.
    Li, B.-C., Ma, S. D.: Efficient computation of 3D moments. Proc. 12th Int. Conf. Pattern Recogn., Vol. I (1994) 22–26Google Scholar
  5. 5.
    Li, B.-C., Shen, J.: Fast computation of moment invariants. Pattern Recogn. 24 (1991) 807–813Google Scholar
  6. 6.
    Li, B.-C., Shen, J.: Pascal triangle transform approach to the calculation of 3D moments. CVGIP: Graphical Models and Image Processing 54 (1992) 301–307Google Scholar
  7. 7.
    Lo, C.-H., Don, H.-S.: 3-D moment forms: their construction and application to object identification and positioning. IEEE Trans. Pattern Anal. Machine Intell. 11 (1989) 1053–1064Google Scholar
  8. 8.
    Pei, S.-C., Liou, L.-G.: Using moments to acquire the motion parameters of a deformable object without correspondences. Image and Vision Computing 12 (1994) 475–485Google Scholar
  9. 9.
    Yang, L., Albregtsen, F.: Fast computation of invariant geometric moments: a new method giving correct results. Proc. 12th Int. Conf. Pattern Recognition, Vol. I (1994) 201–204Google Scholar
  10. 10.
    Yang, L., Albregtsen, F.: Fast and exact computation of Cartesian geometric moments using discrete Green's theorem. Submitted to Pattern Recogn. (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Luren Yang
    • 1
  • Fritz Albregtsen
    • 1
  • Torfinn Taxt
    • 1
  1. 1.Image Processing Laboratory, Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations