Interpretation of printed forms for blind people

  • Torsten Ihle
  • Helmut Schirmer
  • Siegfried Fuchs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 970)


A system is presented enabling blind people to understand and fill in printed forms. Text and graphic components are separated from each other, the first one presented by a Braille-line or alternatively via synthetic speech and the second one by a special swelling paper supplemented with markers for text events and markers for recognized fill in places. Furthermore a new method for the interpretation of complex structured images is described, which is used in the application mentioned above. This method takes advantage of a compositorial hierarchy of objects to be recognized and makes use of models given as relational structures. A convenient language for model formulation is introduced. First results are demonstrated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Alb94]
    Hendrik Albat. Semantik der Graphik in Formularbildern. Master's thesis, Technical University Dresden, 1994. Institut for Artificial Intelligence.Google Scholar
  2. [Boe94]
    Ingo Boersch. Prototyp eines Formularinterpreters für Blinde. Master's thesis, Technical University Dresden, 1994. Institut for Artificial Intelligence.Google Scholar
  3. [Bun85]
    Horst Bunke. Modellgesteuerte Bildanalyse. Leitfäden der angewandten Informatik. B. G. Teubner, Stuttgart, 1985.Google Scholar
  4. [CF90]
    R. G. Casey and D. R. Ferguson. Intelligent forms processing. IBM Systems Journal, 29(3):435–450, 1990.Google Scholar
  5. [CKM91]
    L. Cardona, J. Kohlas, and P. A. Monney. The reliability of reasoning with unreliable rules and propositions. In Symbolic and Quantitative Approaches to Uncertainty: European Conference ECSQAU, pages 125–129, 1991.Google Scholar
  6. [FK88]
    Fletcher and Kasturi. A robust algorithm for text string separation from mixed text/graphics images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):910–918, 1988.Google Scholar
  7. [Fuc94]
    Siegfried Fuchs. Hierarchische Abstraktion mit Relativen. Wissenschaftliche Beiträge zur Informatik, 7(3), 1994.Google Scholar
  8. [GS90]
    V.K. Govindan and A.P. Shivaprasad. Character recognition — a review. Pattern Recognition, 23:671–683, 1990.Google Scholar
  9. [HZ92]
    Hoenes and Zimmer. Separation of textual and non-textual information within mixed-mode documents. In Proc. of Machine Vision Applications, pages 71–74, Tokyo, Japan, 1992.Google Scholar
  10. [I87]
    Osamu Iwaki et al. A segmentation method based on office document hierarchical structure. In Proc. of the 1987 Int. Conf. on Systems, Man and Cybernetics, pages 759–763. IEEE, 1987.Google Scholar
  11. [Ihl93]
    Torsten Ihle. Unscharfe hierarchische Abstraktion mittels Relationalstrukturen. Master's thesis, Technical University Dresden, 1993. Institut for Artificial Intelligence.Google Scholar
  12. [IOO91]
    S. Impedovo, L. Ottaviano, and S. Occhinegro. Optical character recognition — a survey. International Journal of Pattern Recognition and Artificial Intelligence, 5:1–24, 1991.Google Scholar
  13. [Rad82]
    Bernd Radig. Symbolische Beschreibung von Bildfolgen I: Relationengebilde und Morphismen. Technical report, Universität Hamburg, Schlüterstr.79, D-Hamburg, 1982. Fachbereich Informatik.Google Scholar
  14. [Zim91]
    H.-J. Zimmermann. Fuzzy Set Theory and its Applications. Kluwer Academic Publishers, Boston, Dordrecht, London, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Torsten Ihle
    • 1
  • Helmut Schirmer
    • 1
  • Siegfried Fuchs
    • 1
  1. 1.Faculty of Informatics, Institute of Artificial IntelligenceDresden University of TechnologyDresdenGermany

Personalised recommendations