Advertisement

An algorithm for a linear shape-from-shading problem

  • Ryszard Kozera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 970)

Abstract

We present a sequential algorithm for recovery of an object shape from a shading pattern generated under the assumption of a linear reflectance map. The algorithm operates on a rectangular discrete image and uses the height of the sought-after surface along a curve in the image (image boundary) as initial data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Brooks, W. Chojnacki, and R. Kozera. Impossible and ambiguous shading patterns. International Journal of Computer Vision, 7(2):119–126, 1992.Google Scholar
  2. 2.
    M.J. Brooks and W. Chojnacki. Direct computation of shape from shading. In ICPR '94 [8].Google Scholar
  3. 3.
    J. V. Diggelen. A photometric investigation of the slopes and heights of the ranges of hills in the maria of the Moon. Bulletin of the Astronomical Institute of Netherlands, 11(423):283–289, 1951.Google Scholar
  4. 4.
    V. P. Fresenkov. Photometric investigations of lunar surface. Astronomicheskiy Zhurnal, 5:219–234, 1929.Google Scholar
  5. 5.
    V. P. Fresenkov. Photometry in the moon. In Z. Kopal, editor, Physics and Astronomy of the Moon, pages 99–130. Academic Press, New York, 1962.Google Scholar
  6. 6.
    B. K. P. Horn. Obtaining shape from shading information. In P. H. Winston, editor, The Psychology of Computer Vision, chapter 4, pages 115–155. McGraw-Hill, New York, 1975.Google Scholar
  7. 7.
    B. K. P. Horn, editor. Robot Vision. McGraw-Hill, New York, Cambridge, MA, 1986.Google Scholar
  8. 8.
    Proceedings of the 12th IAPR International Conference on Pattern Recognition, Jerusalem, Israel, October 9–13, 1994. IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  9. 9.
    R. Kimmel and A. Bruckstein. Shape offsets via level sets. Technical Report 9204, Center for Intelligent Systems, Technion-Israel Institute of Technology, Haifa, Israel, 1992.Google Scholar
  10. 10.
    R. Kimmel and A. M. Bruckstein. Global shape from shading. In ICPR '94 [8].Google Scholar
  11. 11.
    R. Kozera. Existence and uniqueness in photometric stereo. Applied Mathematics and Computation, 44(1):1–104, 1991.Google Scholar
  12. 12.
    R. Kozera. A provably convergent algorithm for a linear shape from shading. Technical Report 3, Department of Computer Science, University of Western Australia, Perth, Australia, 1994.Google Scholar
  13. 13.
    M. Minnaret. Photometry of the Moon. Planes and Sattelites, 3:213–248, 1961.Google Scholar
  14. 14.
    J. Oliensis. Uniqueness in shape from shading. International journal of Computer Vision, 6(2):75–104, 1991.Google Scholar
  15. 15.
    R. Onn and A. Bruckstein. Integrability disambiguates surface recovery in two-image photometric stereo. International Journal of Computer Vision, 5(1):105–113, 1990.Google Scholar
  16. 16.
    S. Osher. A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations. SIAM Journal of Mathematical Analysis, 24(5):1145–1152, 1993.Google Scholar
  17. 17.
    A. P. Pentland. A possible neural mechanism for computing shape from shading. Neural Computation, 1:208–217, 1989.Google Scholar
  18. 18.
    A. P. Pentland. Shape information from shading: a theory about human perception. Spatial Vision, 4(2):165–182, 1989.Google Scholar
  19. 19.
    A. P. Pentland. Linear shape from shading. International Journal of Computer Vision, 4(2):153–162, 1990.Google Scholar
  20. 20.
    T. Rindfleisch. Photometric methods for lunar topography. Photometric Engineering, 32(3):262–267, 1966.Google Scholar
  21. 21.
    D. E. Willingham. The lunar reflectivity model for ranger block III analysis. Technical Report 32, Jet Propulsion Laboratory, Pasadena, CA, U.S.A., 1964.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Ryszard Kozera
    • 1
    • 2
  1. 1.Department of Computer ScienceThe University of Western AustraliaNedlandsAustralia
  2. 2.Fachbereich InformatikTechnische Universität BerlinBerlinGermany

Personalised recommendations