On the computation of fast data transmissions in networks with capacities and delays

  • Dimitrios Kagaris
  • Grammati E. Pantziou
  • Spyros Tragoudas
  • Christos D. Zaroliagis
Invited Presentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 955)


We examine the problem of transmitting in minimum time a given amount of data between a source and a destination in a network with finite channel capacities and non-zero propagation delays. In the absence of delays, the problem has been shown to be solvable in polynomial time. In this paper, we show that the general problem is NP-hard. In addition, we examine transmissions along a single path, called the quickest path, and present algorithms for general and sparse networks that outperform previous approaches. The first dynamic algorithm for the quickest path problem is also given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. L. Chen and Y. H. Chin, “The quickest path problem”, Computers and Operations Research, 17, pp. 153–161, 1990.CrossRefGoogle Scholar
  2. 2.
    H. N. Djidjev, G. E. Pantziou and C. D. Zaroliagis, “On-line and Dynamic Algorithms for Shortest Path Problems,” Proc. 12th Symp. on Theor. Aspects of Computer Science (STACS'95), LNCS 900, pp.193–204, Springer-Verlag, 1995.Google Scholar
  3. 3.
    G. N. Frederickson, “Planar Graph Decomposition and All Pairs Shortest Paths,” J. ACM, Vol.38, No. 1, pp.162–204, 1991.CrossRefGoogle Scholar
  4. 4.
    G. N. Frederickson, “Using Cellular Graph Embeddings in Solving All Pairs Shortest Path Problems”, Proc. 30th Annual IEEE Symp. on FOCS, 1989, pp.448–453.Google Scholar
  5. 5.
    G.N. Frederickson, “Searching among Intervals and Compact Routing Tables”, Proc. 20th ICALP, 1993, LNCS 700, pp.28–39, Springer-Verlag.Google Scholar
  6. 6.
    M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network optimization algorithms,” J. ACM, Vol. 34, pp. 596–615, 1987.CrossRefGoogle Scholar
  7. 7.
    M.R. Garey, and D.S. Johnson, “Computers and Intractability. A Guide to the Theory of NP-Completeness”, W.H. Freeman and Company, New York, NY, 1979.Google Scholar
  8. 8.
    Y.-C. Hung and G.-H. Chen, “On the quickest path problem,” Proc. ICCI'91, LNCS 497, Springer-Verlag, pp. 44–46, 1991.Google Scholar
  9. 9.
    A. Itai, and M. Rodeh, “Scheduling Transmissions in a Network”, Journal of Algorithms, 6, pp. 409–429, 1985.CrossRefGoogle Scholar
  10. 10.
    J.B. Rosen, S.Z. Sun and G.L. Xue, “Algorithms for the quickest path problem and the enumeration of quickest paths,” Comp. and O.R., 18, pp.579–584, 1991.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Dimitrios Kagaris
    • 1
  • Grammati E. Pantziou
    • 2
  • Spyros Tragoudas
    • 3
  • Christos D. Zaroliagis
    • 4
  1. 1.Electrical Eng. DeptSouthern Illinois UniversityCarbondaleUSA
  2. 2.Computer Science DeptUniversity of Central FloridaOrlandoUSA
  3. 3.Computer Science DeptSouthern Illinois UniversityCarbondaleUSA
  4. 4.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations