Skip to main content

Computing a shortest watchman path in a simple polygon in polynomial-time

  • Invited Presentation
  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 955))

Included in the following conference series:

Abstract

In this paper we present the first polynomial-time algorithm for finding the shortest polygonal chain in a simple polygon such that each point of the polygon is visible from some point on the chain. This chain is called the shortest watchman path, or equivalently, the shortest weakly visible curve of the polygon. In proving this result we also give polynomial time algorithms for finding the shortest aquarium-keeper's path that visits all edges of the polygon, and for finding the shortest postman path that visits all vertices of a polygon.

This paper has been supported by a grant from the Swedish Research Council for Engineering Sciences (Teknikvetenskapliga forskningsrådet).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aggarwal. The Art Gallery Theorem: Its variations, applications and algorithmic aspects. PhD thesis, John Hopkins University, 1984.

    Google Scholar 

  2. B. K. Bhattacharya, A. Mukhopadhyay, and G. T. Toussaint. A linear time alogorithm for computing the shortest line segment from which a polygon is weakly externally visible. In Proceedings of 2nd WADS, pages 412–424. Springer-Verlag, 1991.

    Google Scholar 

  3. S. Carlsson, H. Jonsson, and B. J. Nilsson. Finding the shortest watchman route in a simple polygon. In Proceedings of ISAAC'93, pages 58–67. Springer-Verlag, 1993. LNCS 762.

    Google Scholar 

  4. B. Chazelle. Triangulating a simple polygon in linear time. In Proceedings of the 31th Symposium on Foundations of Computer Science, pages 220–230, 1990.

    Google Scholar 

  5. W. Chin and S. Ntafos. Optimum watchman routes. Inform. Process. Lett., 28:39–44, 1988.

    Article  Google Scholar 

  6. W. Chin and S. Ntafos. Shortest watchman routes in simple polygons. Disc. Comp. Geometry, 6:9–31, 1991.

    Google Scholar 

  7. W. Chin and S. Ntafos. The zookeeper route problem. Inform. Sci., 63:245–259, 1992.

    Article  Google Scholar 

  8. J. Czyzowicz, P. Egyed, H. Everett, D. Rappaport, T. Shermer, D. Souvaine, G. Toussaint, and J. Urrutia. The aquarium keeper's problem. In Proceedings of the 2nd ACM-SIAM Symposium on Discrete Algorithms, pages 459–464, 1991.

    Google Scholar 

  9. G. Das, P. J. Heffernan, and G. Narasimhan. Finding all weakly-visible chords of a polygon in linear time. In Proceedings of the 4th Scandinavian Workshop on Algorithm Theory (SWAT'94), pages 119–130. Springer-Verlag, 1994. LNCS 824.

    Google Scholar 

  10. G. Das and G. Narasimhan. Optimal linear-time algorithm for the shortest illuminating line segment in a polygon. In Proceedings of the 10th Annual Symposium on Computational Geometry, pages 259–266, 1994.

    Google Scholar 

  11. J. Forsberg, U. Larsson, and Å. Wernersson. On mobile robot navigation in cluttered rooms using the range weighted hough transform. IEEE Robotics and Automation Society Magazine, 1995. Department of Computer Science and Electrical Engineering, Luleå University of Technology. Accepted for publication in the special issue on mobile robots.

    Google Scholar 

  12. L. Guibas, J. Hersberger, D. Leven, M. Sharir, and R. Tarjan. Linear time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209–233, 1987.

    Article  Google Scholar 

  13. J. Hersberger and J. Snoeyink. An efficient solution to the zookeeper's problem. In Proceedings of the 6th Canadian Conference on Computational Geometry, pages 104–109, 1994. U. of Saskatchewan, Saskatoon, Ontario.

    Google Scholar 

  14. J. Hersberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk. In Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, pages 54–63, 1993.

    Google Scholar 

  15. J.-C. Latombe, editor. Robot Motion Planning. Kluwer Academic Publishers, Norwell, MA, 1991.

    Google Scholar 

  16. D.T. Lee and A.K. Lin. Computational complexity of art gallery problems. IEEE Trans. Info. Theory, 32(2):276–282, 1986.

    Article  Google Scholar 

  17. B. Nilsson. Guarding Art Galleries; Methods for Mobile Guards. PhD thesis, Lund University, Sweden, 1995.

    Google Scholar 

  18. J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford univ. press, 1987. ISBN 0-19-503965-3.

    Google Scholar 

  19. J.-R. Sack and S. Suri. An optimal algorithm for detecting weak visibility. IEEE Trans. Comput., 39:1213–1219, 1990.

    Article  Google Scholar 

  20. T. Shermer. Recent results in art galleries. In Proceedings of the IEEE, pages 1384–1399, September 1992.

    Google Scholar 

  21. X.-H. Tan, T. Hirata, and Y. Inagaki. An incremental algorithm for constructing shortest watchman routes. In Proceedings of ISA'91, pages 163–175. Springer-Verlag, 1991. LNCS 557.

    Google Scholar 

  22. X.-H. Tan, T. Hirata, and Y. Inagaki. Constructing shortest watchman routes by divide-and-conquer. In Proceedings of ISAAC'93, pages 68–77. Springer-Verlag, 1993. LNCS 762.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Selim G. Akl Frank Dehne Jörg-Rüdiger Sack Nicola Santoro

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carlsson, S., Jonsson, H. (1995). Computing a shortest watchman path in a simple polygon in polynomial-time. In: Akl, S.G., Dehne, F., Sack, JR., Santoro, N. (eds) Algorithms and Data Structures. WADS 1995. Lecture Notes in Computer Science, vol 955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60220-8_56

Download citation

  • DOI: https://doi.org/10.1007/3-540-60220-8_56

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60220-0

  • Online ISBN: 978-3-540-44747-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics