GoslerP — A logic programming tool for inductive inference

  • Hans -Rainer Beick
  • Ventsislav Stankov
2 Inductive Inference for Artificial Intelligence 2.2 Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 961)


This paper starts from the following task: Logic programming is to be connected with a declarative concept of database changes. The theory of inductive inference is considered as the domain of application. Learning processes are characterized by hypothetical knowledge and by permanent changes of this knowledge. Finally, the target consists in the creation of GoslerP, a tool of logic programming, which is usable for the modelling of knowledge based learning processes and the implementation of learning algorithms. GoslerP is an extension of Prolog. At the end of the paper, the new possibilities for learning are demonstrated by a first simple application.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. ANGLUIN / C.H. SMITH (1983): Inductive inference: Theory and methods. Computing Surveys 15, 237–269.Google Scholar
  2. H.-R. BEICK (1989): Enumerative learning from examples in a fixed algebra. Fifth Conference of Program Designers, Eötvös Lorand University, Proceedings Vol I p. 27–32, Budapest.Google Scholar
  3. M. CARLSON / J. WIEN (1992): SICStus — Prolog User's Manual. (Version 0.7) Swedish Institute of Computer Science, Kista.Google Scholar
  4. W. CHEN (1987): A theory of modules based on second order logic. Proc. IEEE Int. Symp. Logic Programming, 24–33.Google Scholar
  5. W.F. CLOCKSIN / C.S. MELLISH (1981): Programming in PROLOG. Springer-Verlag.Google Scholar
  6. U. GESKE (1988): Programmieren mit Prolog. Akademie-Verlag Berlin.Google Scholar
  7. E.M. GOLD (1967): Languages indentification in the limit. Information and Control 10, 447–474.Google Scholar
  8. H.-J. GOLTZ / H. HERRE (1990): Grundlagen der Logischen Programmierung. Akademie-Verlag Berlin.Google Scholar
  9. J. GRABOWSKI (1991): Declarative semantics for changing objects: A metaprogramming approach. Informatik-Preprint, FB Informatik, Humboldt-Universität zu Berlin.Google Scholar
  10. J. GRABOWSKI (1992): Metaprograms for change, assumptions, objects, and inheritance. GOSLER Report 09/92, Fachbereich Mathematik und Informatik, TH Leipzig.Google Scholar
  11. J. GRABOWSKI / W. MÜLLER (1990): Introduction to PROPEL (Version 1.0). Informatik-Preprint, FB Informatik, Humboldt-Universität zu Berlin.Google Scholar
  12. P.M. HILL / J.W. LLOYD (1988): Meta-programming for dynamic knowledge bases. CS-88-18, Department of Computer Science, University of Bristol.Google Scholar
  13. P.M. HILL / J.W. LLOYD (1992): The Gödel programming language. CSTR-92-27, Department of Computer Science, University of Bristol.Google Scholar
  14. H. ILINE / H. KANOUI (1987): Extending logic programming to object programming: The system LAP. Proc. IJCAI 87, 34–39, Morgan Kaufmann.Google Scholar
  15. H. ISHIKATO / H. ARIKAWA / T. SHINOHARA (1992): Efficient inductive inference of primitive Prologs from positive data. Algorithmic Learning Theory '92, Springer-Verlag, LNAI 743, 135–146.Google Scholar
  16. K.P. JANTKE / H.-R. BEICK (1981): Combining postulates of naturalness in inductive inference. Journal of Information Processing and Cybernetiks (EIK) 17, 465–484.Google Scholar
  17. T. KOSCHMANN / M.W. EVANS (1988): Bridging the gap between object-oriented and logic programming. IEEE Software, 5(4), 36–42.Google Scholar
  18. F. MELLENDER (1988): An integration of logic and object-oriented programming. SIGPLAN Notices, 23(10), 102–186.Google Scholar
  19. E.Y. SHAPIRO (1981): Inductive inference of theories from facts. Technical Report 192, Computer Science Department, Yale University.Google Scholar
  20. R. WIEHAGEN (1978): Zur Theorie der algorithmischen Erkennung. Diss.B, Sektion Mathematik, Humboldt-Universität zu Berlin.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Hans -Rainer Beick
    • 1
  • Ventsislav Stankov
    • 1
  1. 1.Institute of InformaticsHumboldt University of BerlinBerlinGermany

Personalised recommendations