Applications of quantum characteristic exponents

  • W. A. Majewski
Part II: Seminars
Part of the Lecture Notes in Physics book series (LNP, volume 457)


We show that using the recently introduced quantum characteristic exponents one can give a simple and natural characterization of stability of quantum dynamical maps.


Lyapunov Exponent Characteristic Exponent Quadrature Operator Quantum Chaos Continuous Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    W. Arverson, in Operator Algebras and Mathematical Physics, Contemporary Mathematics, 62, 283–343 (1987) (American Mathematical Society, Providence, RI, 1987).Google Scholar
  2. [AC]
    L. Arnold, H. Crauel, Random dynamical systems, in Lyapunov exponents, Lecture Notes in Mathematics 1486, Springer-Verlag (1991).Google Scholar
  3. [ACh]
    T. Ando and M.D. Choi, in Aspects of Positivity in Functional Analysis, edited by Nagel et al. (North-Holland, Amsterdam, 1986), pp. 3–13.Google Scholar
  4. [AM]
    R. Alicki, W.A. Majewski, On a general characterization of nonlinear quantum dynamical maps, Phys. Lett. A148, 69 (1990).Google Scholar
  5. [CKM]
    M. Czachor, M. Kuna, W.A. Majewski, Lyapunov instability of squeezing, preprint, Gdansk University (1994).Google Scholar
  6. [ENTS]
    G.G. Emch, H. Narnhofer, W. Thirring and G.L. Sewell, Anosov actions on noncommutative algebras, J. Math. Phys. 35, 5582 (1994).Google Scholar
  7. [ER]
    J.P. Eckmann, D. Ruelle, Rev. Mod. Physics 57, 617 (1985).Google Scholar
  8. [FE]
    R.F. Fox, J. Eidson, Phys. Rev. 34A, 482 (1986).Google Scholar
  9. [KM1]
    M. Kuna, W.A. Majewski, On quantum chaos and quantum characteristic exponents, Rep. Math. Phys. 33, 111 (1993).Google Scholar
  10. [KM2]
    M. Kuna, W.A. Majewski, An example of quantum dynamical system with the hyperbolic instabilities, preprint, Gdansk University (1994).Google Scholar
  11. [M]
    G.J. Milburn, Coherence and chaos in a quantum optic system, Phys. Rev. A41, 6567 (1990).Google Scholar
  12. [MK1]
    W.A. Majewski, M. Kuna, On the definition of characteristic exponents, in Proceedings of the Workshop on Phase Transition: Mathematics, Physics,.., Ed. R. Kotecky, World Scientific (1993).Google Scholar
  13. [MK2]
    W.A. Majewski, M. Kuna, On quantum characteristic exponents, J. Math. Phys. 34, 5007 (1993).Google Scholar
  14. [MK3]
    W.A. Majewski, M. Kuna, Non-commutative systems with chaos, Quantum Probability and Related Topics, vol. 9, in print.Google Scholar
  15. [P]
    Ya.B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory, in Dynamical Systems, Advanced series in nonlinear dynamics, Vol 1., World Scientific (1991).Google Scholar
  16. [V]
    R. Vilela Mendes, On the existence of quantum characteristic exponents, Phys. Lett. A187, 299 (1994).Google Scholar
  17. [Y]
    B. Yurke, Squeezed Light, Rochester University (1989). *** DIRECT SUPPORT *** A3418380 00010Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • W. A. Majewski
    • 1
  1. 1.Institute of Theoretical Physics and AstrophysicsGdansk UniversityGdańskPoland

Personalised recommendations