Combining theorem proving and symbolic mathematical computing

  • Karsten Homann
  • Jacques Calmet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 958)


An intelligent mathematical environment must enable symbolic mathematical computation and sophisticated reasoning techniques on the underlying mathematical laws. This paper disscusses different possible levels of interaction between a symbolic calculator based on algebraic algorithms and a theorem prover. A high level of interaction requires a common knowledge representation of the mathematical knowledge of the two systems. We describe a model for such a knowledge base mainly consisting of type and algorithm schemata, algebraic algorithms and theorems.


theorem proving symbolic mathematics knowledge representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BoCa94]
    W. Bosma, J. Cannon, Handbook of MAGMA Functions, Sydney, 1994.Google Scholar
  2. [CHT92]
    J. Calmet, K. Homann, I.A. Tjandra, Unified Domains and Abstract Computational Structures, in J. Calmet, J.A. Campbell (eds.), International Conference on Artificial Intelligence and Symbolic Mathematical Computing, Karlsruhe, August 3–6, 1992, LNCS 737, pp. 166–177, Springer, 1993.Google Scholar
  3. [CaTj93]
    J. Calmet, I.A. Tjandra, A Unified-Algebra-Based Specification Language for Symbolic Computing, in A. Miola (ed.), Design and Implementation of Symbolic Computation Systems, LNCS 722, pp. 122–133, Springer, 1993.Google Scholar
  4. [Gedd94]
    D. Geddis, The DTP Manual, Stanford University, 1994.Google Scholar
  5. [Heck93]
    A. Heck, Introduction to MAPLE, Springer, 1993.Google Scholar
  6. [JeSu92]
    R.D. Jenks, R.S. Sutor, AXIOM, Springer, 1992.Google Scholar
  7. [LeBr84]
    D.B. Lenat, J.S. Brown, Why AM and EURISKO Appear to Work, Artificial Intelligence 23, pp. 269–294, Elsevier, 1984.Google Scholar
  8. [McCu94]
    W.W. McCune, OTTER 3.0 Reference Manual and Guide, Technical Report ANL-94/6, Argonne National Laboratory, 1994.Google Scholar
  9. [Paul94]
    L.C. Paulson, ISABELLE: A Generic Theorem Prover, LNCS 828, Springer, 1994.Google Scholar
  10. [Shav90]
    J.W. Shavlik, Extending Explanation-Based Learning by Generalizing the Structure of Explanations, Pitman, London, 1990.Google Scholar
  11. [VeVe94]
    A. Vella, C. Vella, Artificial Intelligence and the Mathcycle, in J.H. Johnson, S. McKee, A. Vella (eds.), Artificial Intelligence in Mathematics, Oxford University Press, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Karsten Homann
    • 1
  • Jacques Calmet
    • 1
  1. 1.Institut für Algorithmen und Kognitive SystemeUniversität KarlsruheKarlsruheGermany

Personalised recommendations