Skip to main content

Combining theorem proving and symbolic mathematical computing

  • Conference paper
  • First Online:
Integrating Symbolic Mathematical Computation and Artificial Intelligence (AISMC 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 958))

Abstract

An intelligent mathematical environment must enable symbolic mathematical computation and sophisticated reasoning techniques on the underlying mathematical laws. This paper disscusses different possible levels of interaction between a symbolic calculator based on algebraic algorithms and a theorem prover. A high level of interaction requires a common knowledge representation of the mathematical knowledge of the two systems. We describe a model for such a knowledge base mainly consisting of type and algorithm schemata, algebraic algorithms and theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Bosma, J. Cannon, Handbook of MAGMA Functions, Sydney, 1994.

    Google Scholar 

  2. J. Calmet, K. Homann, I.A. Tjandra, Unified Domains and Abstract Computational Structures, in J. Calmet, J.A. Campbell (eds.), International Conference on Artificial Intelligence and Symbolic Mathematical Computing, Karlsruhe, August 3–6, 1992, LNCS 737, pp. 166–177, Springer, 1993.

    Google Scholar 

  3. J. Calmet, I.A. Tjandra, A Unified-Algebra-Based Specification Language for Symbolic Computing, in A. Miola (ed.), Design and Implementation of Symbolic Computation Systems, LNCS 722, pp. 122–133, Springer, 1993.

    Google Scholar 

  4. D. Geddis, The DTP Manual, Stanford University, 1994.

    Google Scholar 

  5. A. Heck, Introduction to MAPLE, Springer, 1993.

    Google Scholar 

  6. R.D. Jenks, R.S. Sutor, AXIOM, Springer, 1992.

    Google Scholar 

  7. D.B. Lenat, J.S. Brown, Why AM and EURISKO Appear to Work, Artificial Intelligence 23, pp. 269–294, Elsevier, 1984.

    Google Scholar 

  8. W.W. McCune, OTTER 3.0 Reference Manual and Guide, Technical Report ANL-94/6, Argonne National Laboratory, 1994.

    Google Scholar 

  9. L.C. Paulson, ISABELLE: A Generic Theorem Prover, LNCS 828, Springer, 1994.

    Google Scholar 

  10. J.W. Shavlik, Extending Explanation-Based Learning by Generalizing the Structure of Explanations, Pitman, London, 1990.

    Google Scholar 

  11. A. Vella, C. Vella, Artificial Intelligence and the Mathcycle, in J.H. Johnson, S. McKee, A. Vella (eds.), Artificial Intelligence in Mathematics, Oxford University Press, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Calmet John A. Campbell

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Homann, K., Calmet, J. (1995). Combining theorem proving and symbolic mathematical computing. In: Calmet, J., Campbell, J.A. (eds) Integrating Symbolic Mathematical Computation and Artificial Intelligence. AISMC 1994. Lecture Notes in Computer Science, vol 958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60156-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-60156-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60156-2

  • Online ISBN: 978-3-540-49533-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics