The ideal structure of Gröbner base computations

  • Stéphane Collart
  • Daniel Mall
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 958)


A highly structured algorithm for the computation of Gröbner bases founded on the notion of toric degenerations of a polynomial ideal is described, the “Gröbner Stripping Algorithm”. The algorithm relates the complex procedure of Gröbner base computations to the algebraic combinatorial structure of polynomial ideals in a particularly explicit manner, and bears an interesting analogy to the well-known permutation group “Schreier Algorithm” due to Sims.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Buc65]
    B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Univ. Innsbruck, Austria, 1965.Google Scholar
  2. [Buc85]
    B. Buchberger. Gröbner bases: an algorithmic method in polynomial ideal theory. In N. K. Bose, editor, Recent Trends in Multidimensional System Theory, chapter 6, Reidel Publ. Comp., 1985.Google Scholar
  3. [CC92]
    J. Calmet and J. A. Campbell. Artificial intelligence and symbolic mathematical computations. In J. Calmet and J. A. Campbell, editors, Artificial Intelligence and Symbolic Mathematical Computing, pages 1–19, Springer, 1992. Proc. Int'l Conf. AISMC-1, Karlsruhe, Germany, Aug. 1992.Google Scholar
  4. [CKM93]
    S. Collart, M. Kalkbrener, and D. Mall. The Gröbner walk. 1993. Submitted to the J. Symb. Comp.Google Scholar
  5. [CLO92]
    D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics, Springer, New York, 1992.Google Scholar
  6. [CM94a]
    S. Collart and D. Mall. Toric degenerations of polynomial ideals. 1994. In preparation.Google Scholar
  7. [CM94b]
    S. Collart and D. Mall. Toric degenerations of polynomial ideals and com-plex duality. In J. Calmet, editor, Proceedings of the Rhine Workshop on Computer Algebra 1994, pages 147–154, 1994.Google Scholar
  8. [Leo80]
    J. S. Leon. On an algorithm for finding a base and a strong generating set for a group given by generating permutations. Math. Computation, 35(151):941–974, July 1980.Google Scholar
  9. [Mac27]
    F. S. Macaulay. Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc., 26:531–555, 1927.Google Scholar
  10. [Mon92]
    E. Monfroy. Gröbner bases: strategies and applications. In Proc. Conf. on Artificial Intelligence and Symbolic Mathematical Computations, pages 64–79, 1992.Google Scholar
  11. [Rob85]
    L. Robbiano. Term orderings on the polynomial ring. In B. F. Caviness, editor, Proc. EUROCAL 85, pages 513–517, Springer, 1985.Google Scholar
  12. [Sim70]
    C. C. Sims. Computational methods in the study of permutation groups. In John Leech, editor, Computational Problems in Abstract Algebra, pages 169–183, Sci. Res. Council Atlas Computer Laboratory, Pergamon Press, Oxford, 1970. Proc. Conf. at Oxford, 29.VIII–2.IX 1967.Google Scholar
  13. [Wei87]
    V. Weispfenning. Admissible orders and linear forms. ACM SIGSAM Bulletin, 21:16–18, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Stéphane Collart
    • 1
  • Daniel Mall
    • 1
  1. 1.Department of MathematicsFederal Institute of TechnologyZurichSwitzerland

Personalised recommendations