Interactive theorem proving and computer algebra

  • Johannes Ueberberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 958)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Batten, A. Beutelspacher: The Theory of finite Linear Spaces. Combinatorics of Points and Lines, Cambridge University Press, Cambridge (1993).Google Scholar
  2. 2.
    T. Becker, V. Weispfenning: Groebner Bases, Springer Graduate Texts 141, Springer Verlag Berlin Heidelberg, New York (1993).Google Scholar
  3. 3.
    A. Beutelspacher, J. Ueberberg: Symbolic Incidence Geometry. Proposal for doing geometry with a computer, SIGSAM Bull. 27, No. 2 (1993), 19–29 and No. 3 (1993), 9–24.Google Scholar
  4. 4.
    B. Buchberger: Gröbner bases, in preparation.Google Scholar
  5. 5.
    G. E. Collins: Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition, Lecture Notes in Computer Science 33, Springer-Verlag, Berlin, Heidelberg, New York (1975) 134–183.Google Scholar
  6. 6.
    N. de Bruijn, P. Erdös: On a combinatorial problem, Indag. Math. 10 (1948), 421–423.Google Scholar
  7. 7.
    P. Dembowski: Semiaffine Ebenen Arch. Math. 13 (1962), 120–131.CrossRefGoogle Scholar
  8. 8.
    H. Melenk, H. M. Möller, W. Neun: Groebner — A package for calculating Groebner bases, part of the documentation for REDUCE 3.4.Google Scholar
  9. 9.
    R. Loos, V. Weispfenning: Applying linear quantifier elimination, to appear.Google Scholar
  10. 10.
    J. Shoenfield: Mathematical Logic, Addison Wesley, Massachusetts (1967).Google Scholar
  11. 11.
    J. Ueberberg: Einführung in die Computeralgebra mit REDUCE, Bibliographisches Institut Mannheim, Leipzig, Wien (1992).Google Scholar
  12. 12.
    J. Ueberberg: Symbolic Incidence Geometry and Finite Linear Spaces, Discrete Math. 129 (1994), 205–217.CrossRefGoogle Scholar
  13. 13.
    J. Ueberberg: Interactive Theorem Proving and Symbolic Incidence Geometry, in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Johannes Ueberberg
    • 1
  1. 1.Mathematisches InstitutGiessen

Personalised recommendations