Advertisement

Genetic approaches to learning recursive relations

  • P. A. Whigham
  • R. I. McKay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 956)

Abstract

The genetic programming (GP) paradigm is a new approach to inductively forming programs that describe a particular problem. The use of natural selection based on a fitness function for reproduction of the program population has allowed many problems to be solved that require a non-fixed representation. Issues of typing and language forms within the genetic programming paradigm are discussed. The recursive nature of many geospatial problems leads to a study of learning recursive definitions in a subset of a functional language. The inadequacy of GP to create recursive definitions is argued, and a class of problems hypothesised that are difficult for genetic approaches. Operations from the field of Inductive Logic Programming, such as the V and W operators, are shown to have analogies with GP crossover but are able to handle some recursive definitions. Applying a genetic approach to ILP operators is proposed as one approach to learning recursive relations.

Keyword List

Machine Learning Inductive Logic Programming Genetic Programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    John Allen. Anatomy of Lisp. McGraw-Hill Computer Science Series, 1978.Google Scholar
  2. 2.
    Y. Davidor. A naturally occuring niche and species phenomenon the model and first results. In R.K. Belew and L.B. Booker, editors, Proceedings of the 4th International conference on Genetic Algorithms, pages 257–263. Morgan Kaufmann Publishers, San Mateo, California, 1991.Google Scholar
  3. 3.
    John H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, second edition, 1992.Google Scholar
  4. 4.
    John R. Koza. Genetic Programming: on the programming of computers by means of natural selection. A Bradford Book, The MIT Press, 1992.Google Scholar
  5. 5.
    John R. Koza. Genetic Programming: on the programming of computers by means of natural selection, chapter 19, pages 480–526. A Bradford Book, The MIT Press, 1992.Google Scholar
  6. 6.
    John R. Koza. Genetic Programming:on the programming of computers by means of natural selection, chapter 18, pages 473–477. A Bradford Book, The MIT Press, 1992.Google Scholar
  7. 7.
    J.R. Koza. Hierarchical genetic algorithms operating on populations of computer programs. In Proc. 11th International Joint Conf. on Artificial Intelligence (IJ-CAI), volume 1, pages 768–774. Morgan Kaufman, San Mateo, Calif., 1989.Google Scholar
  8. 8.
    R.I. McKay. Relational learning for geospatial problems. Technical Report CS15/94, University College, University of New South Wales, 1994.Google Scholar
  9. 9.
    S. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting resolution. In S. Muggleton, editor, Inductive Logic Programming, pages 261–281. Academic Press Inc. San Diego, CA 92101, 1992.Google Scholar
  10. 10.
    S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton, editor, Inductive Logic Programming, pages 281–299. Academic Press Inc. San Diego, CA 92101, 1992.Google Scholar
  11. 11.
    U. O'Reilly and F. Oppacher. An experimental perspective on genetic programming.In R. Manner and B. Manderick, editors, Parallel Problem Solving from Nature 2, pages 331–340. Elsevier Science Publishers B.V., 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. A. Whigham
    • 1
  • R. I. McKay
    • 1
  1. 1.Department of Computer ScienceUniversity College, University of New South Wales Australian Defence Force AcademyCanberraAustralia

Personalised recommendations