Advertisement

Computation of the Galois groups of the resolvent factors for the direct and inverse Galois problems

  • Annick Valibouze
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 948)

Abstract

In this paper we present a new method for determining the Galois group of a square free univariate polynomial. This method makes use of a priori computation of the Galois group of the factors of its resolvents, and can also be used for the Galois inverse problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnaudiès, J.M., Valibouze, A.: Résolvantes de Lagrange. Rapport LITP 93.61 (1993)Google Scholar
  2. 2.
    Arnaudiès, J.M., Valibouze, A.: Groupes de Galois de polynôes en degré 8. Rapport LITP 94.25 Mars 1994Google Scholar
  3. 3.
    Arnaudiès, J.M., Valibouze, A.: Groupes de Galois de polynômes en degré 9. Rapport LITP 94.30 Mai 1994Google Scholar
  4. 4.
    Arnaudiès, J.M., Valibouze, A.: Calculs de résolvantes. Rapport LITP 94.46 Juillet 1994Google Scholar
  5. 5.
    Arnaudiès, J.M., Valibouze, A.: Groupes de Galois de polynômes de degré 4 à 6. Rapport LITP 94.48 Juillet 1994Google Scholar
  6. 6.
    Arnaudiès, J.M., Valibouze, A.: Groupes de Galois de polynômes de degré 7. Rapport LITP 94.49 Juillet 1994Google Scholar
  7. 7.
    Arnaudiès, J.M., Valibouze, A.: Groupes de Galois de polynôes de degré 10 et 11. Rapport LITP 94.50 Juillet 1994Google Scholar
  8. 8.
    Arnaudiès, J.M., GAP, Valibouze, A.: Calculs de groupes de matrices de partitions, (preprint). Juillet 1994Google Scholar
  9. 9.
    Berwick, E.H.: The Condition That A Quintic Equation Should Be Soluble By Radicals. Proc. London Math. Soc. (2) 14 (1915) 301–307.Google Scholar
  10. 10.
    Berwick, E.H.: On Soluble Sextic equations. Proc. London Math. Soc. (2) 29 (1929) 1–28.Google Scholar
  11. 11.
    Gregory Butler and John McKay: The transitive groups of degree up to 11. Comm. Algebra 11 (1983) 863–911.Google Scholar
  12. 12.
    Casperson, D., McKay, J.: Symmetric functions, m-sets, and Galois groups. To appear in Math. Comp. (1994)Google Scholar
  13. 13.
    Antoine Colin: Théorie de Galois effective et implantation en AXIOM. Mémoire de DEA, colin@cosme.polytechnique.fr (1994)Google Scholar
  14. 14.
    Colin, A.: Formal computation of Galois groups using relative resolvent polynomials. These proceedings.Google Scholar
  15. 15.
    Foulkes, H.O.: The resolvents of an equation of seventh degree. Quart. J. Math. Oxford Ser. (2) (1931) 9–19Google Scholar
  16. 16.
    Girstmair, K.: On invariant Polynomials and Their Application in Field Theory Maths of Comp., vol. 48, no 178 (1987) 781–797Google Scholar
  17. 17.
    G.A.P.: Groups, Algorithms and Programming. Martin Schönert and others, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule, Aachen, 93 Google Scholar
  18. 18.
    Helmut Geyer: Programme zur Berechnung des Galoisgruppen von Polynomen 8. und 9. Grades; Dokumentation. Preprint 93-10 LWR Heidelberg, Mars 1993Google Scholar
  19. 19.
    Hulpke, A.: Alexander.Hulpke@math.rwth.aachen.deGoogle Scholar
  20. 20.
    Lagrange, J.L.: Réflexions sur la résolution algébrique des équations. Mémoires de l'Académie de Berlin, 205–421, (Oeuvres de Lagrange tome IV 205–421)Google Scholar
  21. 21.
    E. Luther: Ueber die Factoren des algebraisch lsbaren irreducible Gleichungen vom sechsten Grade und ihren Resolvanten. Journal fr Math. 37 (1848) 193–220.Google Scholar
  22. 22.
    J. McKay et E.Regener: Actions of permutation groups on τ-sets. Communications in Algebra, 13(3) (1985) 619–630Google Scholar
  23. 23.
    John McKay and Leonard Soicher: Computing Galois Groups over the rationals. Journal of number theory 20 (1985) 273–281.Google Scholar
  24. 24.
    Maxima DOE maintenu par William SchelterGoogle Scholar
  25. 25.
    R.P. Stauduhar: The determination of Galois groups. Math. Comp. 27 (1973) 981–996.Google Scholar
  26. 26.
    N. Tchebotarev: Grundzge des Galois'shen Theorie. P. Noordhoff, 1950Google Scholar
  27. 27.
    Valibouze, A.: Manipulations de fonctions symétriques. Thèse de l'Université Paris VI. (1988)Google Scholar
  28. 28.
    Valibouze, A.: Symbolic computation with symmetric polynomials, an extension to Macsyma. Conférence Computers and Mathematics (1989, MIT, Cambridge, Mass.). Springer-Verlag, (1989) 308–320.Google Scholar
  29. 29.
    Valibouze, A.: Extension SYM de MACSYMA, manuel de l'utilisateur, (manuscrit)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Annick Valibouze
    • 1
  1. 1.L.I.T.P.Université Paris VIParis Cedex 05

Personalised recommendations